JETP Letters

, Volume 106, Issue 10, pp 672–676 | Cite as

Magnetic properties of a Na-doped WS2 monolayer in the presence of an isotropic strain

  • M. LuoEmail author
  • H. H. Yin
  • J. H. Chu
Condensed Matter


The magnetic properties of Na-doped WS2 monolayer under strain are investigated by ab initio methods. Without strain, the Na-doped WS2 monolayer is a magnetic nanomaterial and the total magnetic moment is about 1.07μB. We applied strain to Na-doped WS2 monolayer from–10% to 10%. The magnetic properties are modified under different strain; the doped system gets a maximum value of at 2.01μB 10% tensile strain and a minimum value of at 0μB–10% compressive strain. The coupling between 3p states of S and 5d states of W is responsible for the strong strain effect on the magnetic properties. Our studies predict Na-doped WS2 monolayer under strain to be candidates for application in spintronics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    C. Q. Sun, Nanoscale 2, 1930 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    X. J. Du, Z. Chen, J. Zhang, Z. R. Ning, and X. L. Fan, Superlatt. Microstruct. 67, 40 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett. 8, 3498 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    Y. D. Ma, Y. Dai, W. Wei, C. W. Niu, L. Yu, and B. B. Huang, J. Phys. Chem. C 115, 20237 (2011).CrossRefGoogle Scholar
  7. 7.
    X. R. Li, Y. Dai, Y. D. Ma, and B. B. Huang, Phys. Chem. Chem. Phys. 16, 13383 (2014).CrossRefGoogle Scholar
  8. 8.
    Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, J. B. Lu, and B. B. Huang, Phys. Chem. Chem. Phys. 13, 15546 (2011).CrossRefGoogle Scholar
  9. 9.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    D. Braga, I. G. Lezama, H. Berger, and A. Morpurgo, Nano Lett. 12, 5218 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Li, D. Wu, Z. Zhou, C. R. Cabrera, and Z. Chen, J. Phys. Chem. Lett. 3, 2221 (2012).CrossRefGoogle Scholar
  12. 12.
    Y. Li, Z. Zhou, S. Zhang, and Z. Chen, J. Am. Chem. Soc. 130, 16739 (2008).CrossRefGoogle Scholar
  13. 13.
    Y. Jing, Z. Zhou, C. R. Cabrera, and Z. Chen, J. Mater. Chem. A 2, 12104 (2014).CrossRefGoogle Scholar
  14. 14.
    Q. Tang, Z. Zhou, and Z. Chen, WIREs Comput. Mol. Sci. 5, 360 (2015).CrossRefGoogle Scholar
  15. 15.
    A. Hashmi and J. Hong, J. Phys. Chem. C 119, 9198 (2015).CrossRefGoogle Scholar
  16. 16.
    C. J. Gil, A. Pham, A. Yu, and S. Li, J. Phys.: Condens. Matter 26, 306004 (2014).Google Scholar
  17. 17.
    A. Ramasubramaniam and D. Naveh, Phys. Rev. B 87, 195201 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    H. E. Sliney, Tribol. Int. 15, 303 (1982).CrossRefGoogle Scholar
  19. 19.
    Y. Yang, X. L. Fan, and H. Zhang, Comput. Mater. Sci. 117, 354 (2016).CrossRefGoogle Scholar
  20. 20.
    Y. F. Zhang, Y. Zhang, and F. Liu, Phys. Rev. B 83, 041403 (2011).ADSGoogle Scholar
  21. 21.
    Z. Liu, J. Wu, W. Duan, M. G. Lagally, and F. Liu, Phys. Rev. Lett. 105, 016802 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    F. Liu, P. Rugheimer, E. Mateeva, D. E. Savage, and M. G. Lagally, Nature 416, 498 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    W. M. Ming, Z. F. Wang, M. Zhou, M. Yoon, and F. Liu, Nano Lett. 16, 404 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    H. L. Shi, H. Pan, Y. W. Zhang, and I. B. Yakobson, Phys. Rev. B 88, 205305 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, Y. T. Zhu, and B. B. Huang, ACS Nano 6, 1695 (2012).CrossRefGoogle Scholar
  26. 26.
    L. Z. Kou, C. Tang, W. L. Guo, and C. F. Chen, ACS Nano 5, 1012 (2012).CrossRefGoogle Scholar
  27. 27.
    Y. G. Zhou, Q. L. Su, Z. G. Wang, H. Q. Deng, and X. T. Zu, Phys. Chem. Chem. Phys. 15, 18464 (2013).CrossRefGoogle Scholar
  28. 28.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).ADSCrossRefGoogle Scholar
  29. 29.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  30. 30.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).ADSCrossRefGoogle Scholar
  31. 31.
    R. Mishra, W. Zhou, S. J. Pennycook, S. T. Pantelides, and J. C. Idrobo, Phys. Rev. B 88, 144409 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Department of PhysicsShanghai Polytechnic UniversityShanghaiPeople’s Republic of China
  2. 2.School of Electronics and InformationNantong UniversityNantongPeople’s Republic of China

Personalised recommendations