Advertisement

Instruments and Experimental Techniques

, Volume 62, Issue 3, pp 343–349 | Cite as

Numerical Simulation and Experimental Studies of the RF Power Circuit of Waveguide СO2 Lasers

  • A. I. KarapuzikovEmail author
  • A. A. MarkelovEmail author
ELECTRONICS AND RADIO ENGINEERING
  • 4 Downloads

Abstract

The features of the radio-frequency (RF) paths of waveguide CO2 lasers with a transverse capacitive discharge are considered with the aim of increasing the energy-transfer efficiency and reducing the discharge-ignition instability. The theoretical model of the laser RF path takes the properties of the optical waveguide as a long line into account, as well as the influence of the laser-head housing material and the matching circuit on the parameters of the RF path. The dependence of the laser-pulse energy stability on the Q-factor of the laser internal circuit is shown. The simulation results in the absence of discharge plasma are compared with the experimental data. The RF path was theoretically simulated under the conditions of the presence of discharge plasma, and the dependences of the efficiency of introducing the power into the discharge on the elements of the matching circuit are plotted.

Notes

REFERENCES

  1. 1.
    Karapuzikov, A.A., Karapuzikov, A.I., Kashtanov, D.A., Miroshnichenko, I.B., and Sherstov, I.V., Instrum. Exp. Tech., 2014, vol. 57, no. 2, p. 209.  https://doi.org/10.1134/S0020441214020092 CrossRefGoogle Scholar
  2. 2.
    Sherstov, I.V., Vasiliev, V.A., Karapuzikov, A.I., Zenov, K.G., and Pustovalova, R.V., Instrum. Exp. Tech., 2018, vol. 61, no. 4, p. 583.  https://doi.org/10.1134/S0020441218030259 CrossRefGoogle Scholar
  3. 3.
    Degnan, J.J., Rev. Appl. Phys., 1976, no. 11, p. 1.  https://doi.org/10.1007/BF00895012
  4. 4.
    He, D. and Hall, D.R., Appl. Phys. Lett., 1983, vol. 43, no. 8, p. 726.  https://doi.org/10.1063/1.94491 ADSCrossRefGoogle Scholar
  5. 5.
    Plinski, E.F., Opt. Appl., 1989, vol. 19, no. 1, p. 63.Google Scholar
  6. 6.
    Plinski, E.F., Wendland, J., Krzysztof, J., and Abramski, M., Proc. SPIE, 1998, vol. 3574, p. 496.  https://doi.org/10.1117/12.334477 ADSCrossRefGoogle Scholar
  7. 7.
    He, D. and Hall, D.R., J. Appl. Phys., 1984, vol. 54, no. 8, p. 4367.  https://doi.org/10.1063/1.332673 ADSCrossRefGoogle Scholar
  8. 8.
    Walter, B., Proc. SPIE, 1989, vol. 1020, p. 57.  https://doi.org/10.1117/12.950050 ADSCrossRefGoogle Scholar
  9. 9.
    Youn Myung Kim, Chan Eui Youn, Jung Woong Ra, and Yeong Sik Kim, J. Appl. Phys., 1990, vol. 67, no. 2, p. 1127.  https://doi.org/10.1063/1.345782 ADSCrossRefGoogle Scholar
  10. 10.
    Lopez, R. and Villagomez, R., Instrum. Sci. Technol., 2010, no. 38, p. 52.  https://doi.org/10.1080/10739140903430040
  11. 11.
    Villagomez, R., Lopez, R., Cortes, R., and Coello, V., Optik, 2007, no. 118, p. 110.  https://doi.org/10.1016/j.ijleo.2006.01.013
  12. 12.
    Raizer, Yu.P., Fizika gazovogo razryada (Physics of Gas Discharge), Moscow: Nauka, 1987, p. 530.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Laser Physics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations