Inorganic Materials

, Volume 55, Issue 11, pp 1125–1131 | Cite as

Preparation of Nanostructured Tin(IV) Oxide and Supported Platinum Electrocatalysts Based on It

  • V. A. VolochaevEmail author
  • I. N. Novomlinskii
  • Yu. V. Davydovich
  • E. A. Moguchikh
  • S. V. Belenov
  • V. E. Guterman


We have synthesized tin dioxide with a large specific surface area (122 m2/g), prepared platinum materials supported on it, and characterized them. The results demonstrate that Pt/SnO2 + C composites can be used as catalysts for oxygen electroreduction. The stability of such a catalyst containing 50% carbon and 15 wt % Pt is better than that of commercially available Pt/C electrocatalyst containing 20% Pt.


tin(IV) oxide platinum nanoparticles electrocatalyst oxygen electroreduction reaction noncarbon support 



We are grateful to A.Yu. Nikulin, T.A. Lastovina and Shared Research Facilities Center, OOO SMA, Skolkovo for their assistance in the experimental work.


This research was supported by the Russian Federation Ministry of Science and Higher Education, project no. 13.3005.2017/4.6 (design stage).


  1. 1.
    Kuzov, A.V., Tarasevic, M.R., and Bogdanovskaya, V.A., Catalysts of ethanol anodic oxidation for ethanol–air fuel cell with a proton-conducting polymer electrolyte, Russ. J. Electrochem., 2010, vol. 46, no. 4, pp. 422–430.CrossRefGoogle Scholar
  2. 2.
    Sharaf, O.Z. and Orhan, M.F., An overview of fuel cell technology: fundamentals and applications, Renew. Sustain. Energy Rev., 2014, vol. 32, pp. 810–853.CrossRefGoogle Scholar
  3. 3.
    Yaroslavtsev, A.B., Dobrovol’skii, Yu.A., Shaglaeva, N.S., Frolova, L.A., Gerasimova, E.V., and Sanginov, E.A., Nanostructured materials for low-temperature fuel cells, Usp. Khim., 2012, vol. 81, pp. 191–220.CrossRefGoogle Scholar
  4. 4.
    Antolini, E., Structural parameters of supported fuel cell catalysts: the effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance, Appl. Catal., B, 2016, vol. 181, pp. 298–313.CrossRefGoogle Scholar
  5. 5.
    Antolini, E., Carbon supports for low-temperature fuel cell catalysts, Appl. Catal., B, 2009, vol. 88, nos. 1–2, pp. 1–24.CrossRefGoogle Scholar
  6. 6.
    Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G.F., Ross, P.N., Lucas, C.A., and Markovic, N.M., Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability, Science, 2007, vol. 315, no. 5811, pp. 493–497.CrossRefGoogle Scholar
  7. 7.
    Stamenkovic, V.R., Mun, B.S., Arenz, M., Mayrhofer, K.J.J., Lucas, C.A., Wang, G.F., Ross, P.N., and Markovic, N.M., Trends in electrocatalysis on extended and nanoscale Pt–bimetallic alloy surfaces, Nat. Mater., 2007, vol. 6, no. 3, pp. 241–247.CrossRefGoogle Scholar
  8. 8.
    Stamenkovic, V., Mun, B.S., Mayrhofer, K.J.J., Ross, P.N., Markovic, N.M., Rossmeisl, J., Greeley, J., and Norskov, J.K., Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure, Angew. Chem., Int. Ed., 2006, vol. 45, no. 18, pp. 2897–2901.CrossRefGoogle Scholar
  9. 9.
    Oezaslan, M., Hasche, F., and Strasser, P., Pt-based core–shell catalyst architectures for oxygen fuel cell electrodes, J. Phys. Chem. Lett., 2013, vol. 4, no. 19, pp. 3273–3291.CrossRefGoogle Scholar
  10. 10.
    Chen, A. and Holt-Hindle, P., Platinum-based nanostructured materials: synthesis, properties, and applications, Chem. Rev., 2010, vol. 110, no. 6, pp. 3767–3804.CrossRefGoogle Scholar
  11. 11.
    Ferreir, P.J., La O, G.J., Shao-Horn, Y., Morgan, D., Makharia, R., Kocha, S., and Gasteiger, H.A., Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells – a mechanistic investigation, J. Electrochem. Soc., 2005, vol. 152, no. 11, pp. A2256–A2271.CrossRefGoogle Scholar
  12. 12.
    Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., McGrath, J.E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishikata, A., Siroma, Z., Uchimoto, Y., Yasuda, K., Kimijima, K.I., and Iwashita, N., Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev., 2007, vol. 107, no. 10, pp. 3904–3951.CrossRefGoogle Scholar
  13. 13.
    Shao, Y.Y., Yin, G.P., and Gao, Y.Z., Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell, J. Power Sources, 2007, vol. 171, no. 2, pp. 558–566.CrossRefGoogle Scholar
  14. 14.
    Hodnik, N., Dehm, G., and Mayrhofer, K.J.J., Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research, Acc. Chem. Res., 2016, vol. 49, no. 9, pp. 2015–2022.CrossRefGoogle Scholar
  15. 15.
    Kuzov, A.V., Tarasevich, M.R., Bogdanovskaya, V.A., Modestov, A.D., Tripachev, O.V., and Korchagin, O.V., Degradation processes in hydrogen–air fuel cell as a function of the operating conditions and composition of membrane–electrode assemblies, Russ. J. Electrochem., 2016, vol. 52, no. 7, pp. 705–715.CrossRefGoogle Scholar
  16. 16.
    Venkatesan, S.V., Dutta, M., and Kjeang, E., Mesoscopic degradation effects of voltage cycled cathode catalyst layers in polymer electrolyte fuel cells, Electrochem. Commun., 2016, vol. 72, pp. 15–18.CrossRefGoogle Scholar
  17. 17.
    Sharma, S. and Pollet, B.G., Support Materials for PEMFC and DMFC Electrocatalysts – A Review, J. Power Sources, 2012, vol. 208, pp. 96–119.CrossRefGoogle Scholar
  18. 18.
    Bogdanovskaya, V.A., Kol’tsova, E.M., Tarasevich, M.R., Radina, M.V., Zhutaeva, G.V., Kuzov, A.V., and Gavrilova, N.N., Highly active and stable catalysts based on nanotubes and modified platinum for fuel cells, Russ. J. Electrochem., 2016, vol. 52, no. 8, pp. 723–734.CrossRefGoogle Scholar
  19. 19.
    Wang, L., Chen, J., Rudolph, V., and Zhu, Z., Nanotubules-supported Ru nanoparticles for preferential CO oxidation in H2-rich stream, Adv. Powder Technol., 2012, vol. 23, no. 4, pp. 465–471.CrossRefGoogle Scholar
  20. 20.
    Balakhonov, S.V., Vatsadze, S.Z., and Churagulov, B.R., Effect of supercritical drying parameters on the electrochemical properties of vanadium oxide-based aerogels, Inorg. Mater., 2017, vol. 53, no. 2, pp. 181–184.CrossRefGoogle Scholar
  21. 21.
    Ogi, T., Nandiyanto, A.B.D., and Okuyama, K., Nanostructuring strategies in functional fine-particle synthesis towards resource and energy saving applications, Adv. Powder Technol., 2014, vol. 25, no. 1, pp. 3–17.CrossRefGoogle Scholar
  22. 22.
    Jiang, L., Sun, G., Zhou, Z., Sun, S., Wang, Q., Yan, S., Li, H., Tian, J., Guo, J., Zhou, B., and Xin, Q., Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts, J. Phys. Chem. B, 2005, vol. 109, no. 18, pp. 8774–8778.CrossRefGoogle Scholar
  23. 23.
    Kuriganova, A.B. and Smirnova, N.V., Pt/SnOx–C composite material for electrocatalysis, Mendeleev Commun., 2014, vol. 24, no. 6, pp. 351–352.CrossRefGoogle Scholar
  24. 24.
    Kuriganova, A.B., Leontyeva, D.V., Ivanov, S., Bund, A., and Smirnova, N.V., Electrochemical dispersion technique for preparation of hybrid MOx–C supports and Pt/MOx–C electrocatalysts for low-temperature fuel cells, J. Appl. Electrochem., 2016, vol. 46, no. 12, pp. 1245–1260.CrossRefGoogle Scholar
  25. 25.
    Antoniassi, R.M., Silva, J.C.M., Oliveira, N.A., and Spinacé, E.V., Synthesis of Pt + SnO2/C electrocatalysts containing Pt nanoparticles with preferential (100) orientation for direct ethanol fuel cell, Appl. Catal., B, 2017, vol. 218, pp. 91–100.CrossRefGoogle Scholar
  26. 26.
    Zhang, P., Huang, S.-Y., and Popov, B.N., Mesoporous tin oxide as an oxidation-resistant catalyst support for proton exchange membrane fuel cells, J. Electrochem. Soc., 2010, vol. 157, no. 8, pp. B1163–B1172.CrossRefGoogle Scholar
  27. 27.
    Frolova, L.A. and Dobrovolsky, Yu.A., Platinum electrocatalysts based on oxide supports for hydrogen and methanol fuel cells, Russ. Chem. Bull. Int. Ed., 2011, vol. 60, no. 6, pp. 1101–1111.CrossRefGoogle Scholar
  28. 28.
    Frolova, L., Lyskov, N., and Dobrovolsky, Yu., Nanostructured Pt/SnO2–SbOx–RuO2 electrocatalysts for direct alcohol fuel cells, Solid State Ionics, 2012, vol. 225, pp. 92–98.CrossRefGoogle Scholar
  29. 29.
    Elezović, N.R., Babić, B.M., Radmilović, V.R., and Krstajić, N.V., Synthesis and characterization of Pt catalysts on SnO2 based supports for oxygen reduction reaction, J. Electrochem. Soc., 2013, vol. 160, no. 10, pp. F1151–F1158.CrossRefGoogle Scholar
  30. 30.
    Gutsche, C., Knipper, M., Plaggenborg, T., Parisi, J., and Kolny-Olesiak, J., Synthesis of facetted Pt nanoparticles on SnO2 as an oxygen reduction catalyst, CrystEngComm, 2017, vol. 19, no. 26, pp. 3666–3673.CrossRefGoogle Scholar
  31. 31.
    Ruiz-Camacho, B., Medina-Ramírez, A., Fuentes-Ramírez, R., and Gómez, C.M., Simple synthesis of Pt–Ag/SnO2–C for use as a catalyst of methanol oxidation in alkaline media, J. Solid State Electrochem., 2017, vol. 21, no. 8, pp. 2449–2456.CrossRefGoogle Scholar
  32. 32.
    Alekseenko, A., Ashihina, E., Shpanko, S., Volochaev, V., Safronenko, O., and Guterman, V., Application of CO atmosphere in the liquid phase synthesis as a universal way to control the microstructure and electrochemical performance of Pt/C electrocatalysts, Appl. Catal., B, 2018, vol. 226, pp. 608–615.CrossRefGoogle Scholar
  33. 33.
    Kirakosyan, S.A., Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Tabachkova, N.Y., Effect of CO atmosphere on morphology and electrochemically active surface area in the synthesis of Pt/C and PtAg/C electrocatalysts, Nanotechnol. Russ., 2016, vol. 11, no. 5, pp. 287–296.CrossRefGoogle Scholar
  34. 34.
    Brunauer, S., Emmett, P.H., and Teller, E., Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 1938, vol. 60, no. 2, pp. 309–319.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Volochaev
    • 1
    Email author
  • I. N. Novomlinskii
    • 1
  • Yu. V. Davydovich
    • 1
  • E. A. Moguchikh
    • 1
  • S. V. Belenov
    • 1
  • V. E. Guterman
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations