Inorganic Materials

, Volume 55, Issue 11, pp 1097–1103 | Cite as

Structure Formation during High-Temperature Synthesis in an Activated Ti + Al Powder Mixture

  • V. Yu. FilimonovEmail author
  • M. V. Loginova
  • A. V. Sobachkin
  • S. G. Ivanov
  • A. A. Sitnikov
  • V. I. Yakovlev
  • A. Z. Negodyaev
  • A. Yu. Myasnikov


This paper presents a detailed experimental study of phase formation processes in a mechanically activated Ti + Al powder mixture. High-temperature synthesis has been performed in thermal explosion mode using induction heating of the mixture. We present the first evidence that, during a continuous transition from rapid heating to high-temperature annealing, the composition of the synthesis products depends on the secondary structuring time. Early stages of annealing involve structural relaxation processes, which make the phase composition more uniform and lead to the formation of an essentially single-phase TiAl compound. In later stages, the system undergoes a transition to thermodynamic equilibrium, which is accompanied by the formation of compounds that are in equilibrium at the annealing temperature.


mechanical activation induction heating high-temperature annealing structural relaxation 



This work was supported by the Russian Federation Ministry of Science and Higher Education, state research target no. 11.1085.2017/4.6.


  1. 1.
    Khina, B.B. and Formanek, B., On the physicochemical mechanism of the influence of preliminary mechanical activation on self-propagating high-temperature synthesis, Solid State Phenom., 2008, vol. 138, pp. 159–164.CrossRefGoogle Scholar
  2. 2.
    Aruna, S.T. and Mukasyan, A.S., Combustion synthesis and nanomaterials, Curr. Opin. Solid State Mater. Sci., 2008, vol. 12, pp. 44–50.CrossRefGoogle Scholar
  3. 3.
    Mukasyan, A.S., Khina, B.B., Reeves, R.V., and Son, S.F., Mechanical activation and gasless explosion: nanostructural aspects, Chem. Eng. J., 2011, vol. 174, pp. 677–686.CrossRefGoogle Scholar
  4. 4.
    Filimonov, V.Yu., High-temperature synthesis in nanostructured heterogeneous systems, Curr. Opin. Chem. Eng., 2011, vol. 3, pp. 18–24.CrossRefGoogle Scholar
  5. 5.
    White J.D., Reeves, R.V., Son, S.F., and Mukasyan, A.S., Thermal explosion in Al–Ni system: influence of mechanical activation, J. Phys. Chem. A, 2009, vol. 113, pp. 13 541–13 547.Google Scholar
  6. 6.
    Mukasyan, A.S., White, J.D., Kovalev, D.Yu., Kochetov, N.A., Ponomarev, V.I., and Son, S.F., Dynamics of phase transformation during thermal explosion in the Al–Ni system: influence of mechanical activation, Phys. B (Amsterdam, Neth.), 2010, vol. 405, pp. 778–784.Google Scholar
  7. 7.
    Shteinberg, A.S., Ya-Cheng Lin, Son, S.F., and Mukasyan, A.S., Kinetics of high temperature reaction in Ni–Al system: influence of mechanical activation, J. Phys. Chem. A, 2010, vol. 114, pp. 6111–6116.CrossRefGoogle Scholar
  8. 8.
    Filimonov, V.Yu., Korchagin, M.A., Dietenberg, I.A., Tyumentsev, A.N., and Lyakhov, N.Z., High temperature synthesis of single-phase Ti3Al intermetallic compound in mechanically activated powder mixture, Powder Technol., 2013, vol. 235, pp. 606–613.CrossRefGoogle Scholar
  9. 9.
    Korchagin, M.A. and Dudina, D.V., Application of self-propagating high-temperature synthesis and mechanical activation for obtaining nanocomposites, Combust. Explos. Shock Waves, 2007, vol. 43, pp. 176–187.CrossRefGoogle Scholar
  10. 10.
    Korchagin, M.A., Grigorieva, T.F., and Bokhonov, B.B., Solid-state combustion in mechanically activated SHS systems. I. Effect of activation time on process parameters and combustion product, Combust. Explos. Shock Waves, 2003, vol. 39, pp. 43–50.CrossRefGoogle Scholar
  11. 11.
    Korchagin, M.A., Grigorieva, T.F., and Bokhonov, B.B., Solid-state combustion in mechanically activated SHS systems: II. Effect of mechanical activation conditions on process parameters and combustion product composition, Combust. Explos. Shock Waves, 2003, vol. 39, pp. 51–58.CrossRefGoogle Scholar
  12. 12.
    Filimonov, V.Yu., Korchagin, M.A., Smirnov, E.V., Sytnikov, A.A., Yakovlev, V.I., and Lyakhov, N.Z., Kinetics of mechanically activated high temperature synthesis of Ni3Al in the thermal explosion mode, Intermetallics, 2011, vol. 19, pp. 833–840.CrossRefGoogle Scholar
  13. 13.
    Charlot, F., Bernard, F., Gaffet, E., Klein, D., and Niepce, J.C., In situ time-resolved diffraction coupled with a thermal I.R. camera to study mechanically activated SHS reaction: case of Fe–Al binary system, Acta Mater., 1999, vol. 47, pp. 616–629.CrossRefGoogle Scholar
  14. 14.
    Gras, C., Gaffet, E., and Bernard, F., Combustion wave structure during the MoSi2 synthesis by mechanically-activated self-propagating high-temperature synthesis (MASHS): in situ time-resolved investigations, Intermetallics, 2006, vol. 14, pp. 521–529.CrossRefGoogle Scholar
  15. 15.
    Gauthier, V., Bernard, F., Gaffet, E., Josse, C., and Larpin, J.P., In-situ time resolved X-ray diffraction study of the formation of the nanocrystalline NbAl3 phase by mechanically activated self-propagating high-temperature synthesis reaction, Mater. Sci. Eng., A, 1999, vol. 272, pp. 334–341.CrossRefGoogle Scholar
  16. 16.
    Turrillas, C.C.X., Vaughan, G.B.M., Terry, A.E., Kvick, A., and Rodriguez, M.A., Al–Ni intermetallics obtained by SHS; a time-resolved X-ray diffraction study, Intermetallics, 2007, vol. 15, pp. 1163–1171.CrossRefGoogle Scholar
  17. 17.
    Przeliorz, R., Goral, M., Moskal, G., and Swadzba, L., The relationship between specific heat capacity and oxidation resistance of TiAl alloys, J. Achievements Mater. Manufact. Eng., 2007, vol. 21, pp. 48–50.Google Scholar
  18. 18.
    Novoselova, T., Celotto, S., Morgan, R., Fox, P., and O’Neill, W., Formation of TiAl intermetallics by heat treatment of cold sprayed precursor deposits, J. Alloys Compd., 2007, vol. 436, pp. 69–77.CrossRefGoogle Scholar
  19. 19.
    Palm, M., Zhang, L.C., Stein, F., and Sauthoff, G., Phases and phase equilibria in the Al rich part of the Al–Ti system above 900C, Intermetallics, 2002, vol. 10, pp. 523–540.CrossRefGoogle Scholar
  20. 20.
    Rohatgi, A., Harach, D.J., Vecchio, K.S., and Harvey, K.P., Resistance-curve and fracture behavior of Ti–Al3Ti metallicointermetallic laminate (MIL) composites, Acta Mater., 2003, vol. 51, pp. 2933–2957.CrossRefGoogle Scholar
  21. 21.
    Filimonov, V.Yu., Sitnikov, A.A., Afanas’ev, A.V., Loginova, M.V., Yakovlev, V.I., Negodyaev, A.Z., Schreifer, D.V., and Solov’ev, V.A., Microwave assisted combustion synthesis in mechanically activated 3Ti + Al powder mixtures: structure formation issues, Int. J. Self-Propag. High-Temp. Synth., 2014, vol. 23, pp. 18–25.CrossRefGoogle Scholar
  22. 22.
    Yi, H.C., Petric, A., and Moore, J.J., Effect of heating rate on the combustion synthesis of Ti–Al intermetallic compounds, J. Mater. Sci., 1992, vol. 27, pp. 6797–6806.CrossRefGoogle Scholar
  23. 23.
    Rogachev, A.S., Shkodich, N.F., Vadchenko, S.G., Baras, F., Kovalev, D.Yu., Rouvimov, S., Nepapushev, A.A., and Mukasyan, A.S., Influence of the high energy ball milling on structure and reactivity of the Ni + Al powder mixture, J. Alloys Compd., 2013, vol. 577, pp. 600–605.CrossRefGoogle Scholar
  24. 24.
    Mukasyan, A.S., Khina, B.B., Reeves, R.V., and Son, S.F., Mechanical activation and gasless explosion: nanostructural aspects, Chem. Eng. J., 2011, vol. 174, pp. 677–686.CrossRefGoogle Scholar
  25. 25.
    Filimonov, V.Yu., Koshelev, K.B., and Sytnikov, A.A., Thermal modes of heterogeneous exothermic reactions. solid-phase interaction, Combust. Flame, 2017, vol. 185, pp. 93–104.CrossRefGoogle Scholar
  26. 26.
    Che, H.Q. and Fan, Q.C., Microstructural evolution during the ignition/quenching of Pre-Heated Ti/3Al powders, J. Alloys Compd., 2009, vol. 475, pp. 184–190.CrossRefGoogle Scholar
  27. 27.
    Wang, T. and Zhang, J., Thermoanalytical and metallographical investigations on the synthesis of TiAl3 from elementary powders, Mater. Chem. Phys., 2006, vol. 99, pp. 20–25.CrossRefGoogle Scholar
  28. 28.
    Xu, L., Cui, Y.Y., Hao, Y.L., and Yang, R., Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples, Mater. Sci. Eng., A, 2006, vol. 35, pp. 638–647.CrossRefGoogle Scholar
  29. 29.
    Medda, E., Delogu, F., and Cao, G., Combination of mechanochemical activation and self-propagating behaviour for the synthesis of Ti aluminides, Mater. Sci. Eng., A, 2003, vol. 361, pp. 23–28.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. Yu. Filimonov
    • 1
    • 2
    Email author
  • M. V. Loginova
    • 1
  • A. V. Sobachkin
    • 1
  • S. G. Ivanov
    • 1
  • A. A. Sitnikov
    • 1
  • V. I. Yakovlev
    • 1
  • A. Z. Negodyaev
    • 1
  • A. Yu. Myasnikov
    • 1
    • 3
  1. 1.Altai State Technical UniversityBarnaulRussia
  2. 2.Institute for Water and Environmental Problems, Siberian Branch, Russian Academy of SciencesBarnaulRussia
  3. 3.Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations