Advertisement

Inorganic Materials

, Volume 55, Issue 11, pp 1179–1184 | Cite as

Optical Properties and Electron Paramagnetic Resonance Spectra of Zirconium Fluoride- and Hafnium Fluoride-Based Glasses Activated with MnO2 and EuF2

  • M. N. BrekhovskikhEmail author
  • S. P. Solodovnikov
  • S. Kh. Batygov
  • L. V. Moiseeva
  • I. A. Zhidkova
  • V. A. Fedorov
Article
  • 6 Downloads

Abstract

We have studied luminescence and electron paramagnetic resonance (EPR) spectra of manganese- and europium-activated fluorozirconate glasses in the ZrF4–BaF2–LaF3–AlF3–NaF (ZBLAN) system and fluorohafnate glasses in the HfF4–BaF2–LaF3–AlF3–NaF (HBLAN) system in order to assess the oxidation state and spatial distribution of the activator ions. The manganese luminescence band has been shown to shift from the green (545 nm) to the red (610 nm) spectral region, and additional lines in the EPR spectrum of manganese have been observed to emerge in the EPR spectrum of manganese as a result of BaCl2 substitution for BaF2 in the ZBLAN glass. The ratio of the concentration of free activator ions to that of clustered ions has been estimated quantitatively. It has been shown that, at high doping levels, the manganese and europium ions in the glasses are predominantly clustered, and only a small part of them are present as isolated ions.

Keywords:

fluorozirconate glasses modification luminescence electron paramagnetic resonance manganese and europium ions glass-ceramics 

Notes

ACKNOWLEDGMENTS

In this research, we used equipment at the Shared Physical Characterization Facilities Center (Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; and Prokhorov General Physics Institute, Russian Academy of Sciences), supported by the Russian Federation Ministry of Science and Higher Education (state research targets for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; the Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; and the Prokhorov General Physics Institute, Russian Academy of Sciences; basic research).

FUNDING

The investigation of the optical properties and electron paramagnetic resonance spectra of the manganese ions was supported by the Russian Science Foundation, project no. 18-13-00407.

REFERENCES

  1. 1.
    Lin, Y.C., Karlsson, M., and Bettinelli, M., Inorganic phosphor materials for lighting, Photoluminescent Materials and Electroluminescent Devices, Armaroli, N. and Bolink, H., Eds., Topics in Current Chemistry Collections, Cham: Springer, 2017, pp. 308–355.Google Scholar
  2. 2.
    Li, G., Qi, S., Li, P., and Wang, Z., Research progress of Mn doped phosphors, RSC Adv., 2017, vol. 7, pp. 38 318–38 334.  https://doi.org/10.1039/C7RA06026B
  3. 3.
    Xu, Y.K. and Adachi, S., Properties of Na2SiF6:Mn4+ and Na2GeF6:Mn4+ red phosphors synthesized by wet chemical etching, J. Appl. Phys., 2009, vol. 105, no. 1, paper 013 525.  https://doi.org/10.1063/1.3056375
  4. 4.
    Aseev, V.A., Kolobkova, E.V., Nekrasova, Ya.A., Nikonorov, N.V., and Rokhmin, A.S., Manganese luminescence in fluorophosphate glasses, Nauchno-Tekh. Vestn. Inform. Tekhnol., Mekh. Opt., 2012, no. 6 (82), pp. 36–39.Google Scholar
  5. 5.
    Boulard, B., Fluoride glasses and planar optical waveguides, Functionalized Inorganic Fluorides, Tressaud, A., Ed., London: Wiley, 2010, ch. 11, pp. 331–346.Google Scholar
  6. 6.
    Brekhovskikh, M.N., Dmitruk, L.N., Moiseeva, L.V., and Fedorov, V.A., Glasses based on fluorides of metals of the I–IV groups: synthesis, properties and application, Inorg. Mater., 2009, vol. 45, no. 13, pp. 1477–1493.  https://doi.org/10.1134/S0020168509130032 CrossRefGoogle Scholar
  7. 7.
    Schweizer, S. and Johnson, J.A., Fluorozirconate-based glass ceramic X-ray detectors for digital radiography, Radiat. Meas., 2007, vol. 42, pp. 632–637. https://doi.org/10.1016/j.radmeas.2007.01.056CrossRefGoogle Scholar
  8. 8.
    Schweizer, S., Henke, B., Miclea, P.T., Ahrens, B., and Johnson, J.A., Multi-functionality of fluorescent nanocrystals in glass ceramics, Radiat. Meas., 2010, vol. 45, pp. 485–489.  https://doi.org/10.1016/j.radmeas.2009.11.029 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Edgar, A., Williams, G.V.M., Secu, M., Schweizer, S., and Spaeth, J.-M., Optical properties of a high-efficiency glass ceramic X-ray storage phosphor, Radiat. Meas., 2004, vol. 38, pp. 413–416. https://doi.org/ 10.1016/j.radmeas.2003.12.031CrossRefGoogle Scholar
  10. 10.
    Buñuel, M.A., Alcalá, R., and Cases, R., Optical study of Mn2+ ions environments in fluorochlorozirconate and fluorobromozirconate glasses, J. Phys. Condens. Matter, 1998, vol. 10, pp. 9343–9358.  https://doi.org/10.1063/1.476854 CrossRefGoogle Scholar
  11. 11.
    Wertz, J.E. and Bolton, J.R., Electron Spin Resonance: Elementary Theory and Practical Applications, New York: McGraw-Hill, 1972. Translated under the title Teoriya i prakticheskie prilozheniya metoda EPR, Moscow: Mir, 1975, pp. 277–337.Google Scholar
  12. 12.
    Brekhovskikh, M.N., Solodovnikov, S.P., Moiseeva, L.V., Zhidkova, I.A., Denisov, G.L., and Fedorov, V.A., EPR spectra and distribution of manganese ions in modified fluorozirconate glasses, Inorg. Mater., 2019, vol. 55, no. 7, pp. 710–714.  https://doi.org/10.1134/S0020168519070045 CrossRefGoogle Scholar
  13. 13.
    Carrington, A. and McLachlan, A.D., Introduction to Magnetic Resonance with Applications to Chemistry and Chemical Physics, New York: Harper & Row, 1967. Translated under the title Magnitnyi rezonans i ego primenenie v khimii, Moscow: Mir, 1970, pp. 341–434.Google Scholar
  14. 14.
    Brekhovskikh, M.N., Batygov, S.Kh., Moiseeva, L.V., Demina, L.I., Zhidkova, I.A., Solodovnikov, S.P., and Fedorov, V.A., Optical properties of europium-activated hafnium fluoride-based glasses, Inorg. Mater., 2016, vol. 52, no. 10, pp. 1031–1034.  https://doi.org/10.1134/S0020168516100058 CrossRefGoogle Scholar
  15. 15.
    MacFarlane, D.R., Newman, P.J., Cashion, J.D., and Edgar, A., In situ generation of Eu2+ in glass-forming melts, J. Non-Cryst. Solids, 1999, vols. 256–257, pp. 53–58.  https://doi.org/10.1016/S0022-3093(99)00470-6 CrossRefGoogle Scholar
  16. 16.
    Brodbeck, C.M. and Iton, L.E., The EPR spectra of Gd3+ and Eu2+ in glassy systems, J. Chem. Phys., 1985, vol. 83, pp. 4285–4299.  https://doi.org/10.1063/1.449041 CrossRefGoogle Scholar
  17. 17.
    Legein, C., Buzare, J.Y., Silli, G., and Jacoboni, C., The local field distribution of Gd3+ in transition metal fluoride glasses investigated by electron paramagnetic resonance, J. Phys.: Condens. Matter, 1996, vol. 8, pp. 4339–4350.  https://doi.org/10.1088/0953-8984/8/23/023 CrossRefGoogle Scholar
  18. 18.
    Furniss, D., Harris, E.A., and Hollis, D.B., EPR of Gd3+ and Eu2+ in fluorozirconate glasses, J. Phys. C: Solid State Phys., 1987, vol. 20, pp. L147–L150. https://doi.org/10.1088/0022-3719/20/10/002CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. N. Brekhovskikh
    • 1
    Email author
  • S. P. Solodovnikov
    • 2
  • S. Kh. Batygov
    • 3
  • L. V. Moiseeva
    • 3
  • I. A. Zhidkova
    • 1
  • V. A. Fedorov
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of SciencesMoscowRussia
  3. 3.Prokhorov General Physics Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations