Inorganic Materials

, Volume 55, Issue 11, pp 1185–1188 | Cite as

Optical Properties of Manganese-Activated Fluorozirconate Glasses

  • S. Kh. Batygov
  • M. N. BrekhovskikhEmail author
  • L. V. Moiseeva
  • V. N. Makhov
  • N. Yu. Kirikova
  • V. E. Shukshin
  • V. A. Fedorov


We have studied optical absorption and luminescence in fluorozirconate glasses activated with manganese, which was added to the glass batch in the form of compounds of manganese in different valence states (Mn2+ and Mn4+). The results demonstrate that, independent of its original valence state, the manganese is present in the glasses as Mn2+ and Mn3+ ions. The 300-K luminescence spectrum of the fluoride glass contains a broad green emission band due to the Mn2+4T1(G) → 6A1 transition. Its absorption spectrum contains weak bands due to Mn2+ and a relatively strong, broad band of Mn3+. Partial chlorine substitution for fluorine leads to a redshift of the luminescence bands and absorption band of manganese. The changes induced in the spectra by chlorine substitution for fluorine are due to changes in the local environment of the manganese ions.


fluorozirconate glasses modification luminescence absorption spectrum manganese ions 



In this research, we used equipment at the Shared Physical Characterization Facilities Center (Prokhorov General Physics Institute, Russian Academy of Sciences; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; and Lebedev Institute of Physics, Russian Academy of Sciences), supported by the Russian Federation Ministry of Science and Higher Education (state research targets for the Prokhorov General Physics Institute, Russian Academy of Sciences; the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; and the Lebedev Institute of Physics, Russian Academy of Sciences; basic research).


This work was supported by the Russian Science Foundation, project no. 18-13-00407.


  1. 1.
    Lin, Y.C., Karlsson, M., and Bettinelli, M., Inorganic phosphor materials for lighting, Photoluminescent Materials and Electroluminescent Devices, Armaroli, N. and Bolink, H., Eds., Topics in Current Chemistry Collections, Cham: Springer, 2017, pp. 308–355.Google Scholar
  2. 2.
    Xu, Y.K. and Adachi, S., Properties of Na2SiF6:Mn4+ and Na2GeF6:Mn4+ red phosphors synthesized by wet chemical etching, J. Appl. Phys., 2009, vol. 105, no. 1, paper 013 525.
  3. 3.
    Hoshino, R., Nakamura, T., and Adachi, S., Synthesis and photoluminescence properties of BaSnF6:Mn4+ red phosphor, ECS J. Solid State Sci. Technol., 2016, vol. 5, no. 3, pp. R37–R43. CrossRefGoogle Scholar
  4. 4.
    Chen, D., Zhou, Y., and Zhong, J., A review on Mn4+ activator in solids for warm white light-emitting diodes, RSC Adv., 2016, vol. 6, pp. 6285–6296. CrossRefGoogle Scholar
  5. 5.
    Aseev, V.A., Kolobkova, E.V., Nekrasova, Ya.A., Nikonorov, N.V., and Rokhmin, A.S., Manganese luminescence in fluorophosphate glasses, Nauchno-Tekh. Vestn. Inform. Tekhnol., Mekh. Opt., 2012, no. 6 (82), pp. 36–39.Google Scholar
  6. 6.
    Edgar, A., Williams, G.V.M., Secu, M., Schweizer, S., and Spaeth, J.-M., Optical properties of a high-efficiency glass ceramic X-ray storage phosphor, Radiat. Meas., 2004, vol. 38, pp. 413–416. 10.1016/j.radmeas.2003.12.031CrossRefGoogle Scholar
  7. 7.
    Edgar, A., Schweizer, S., Assmann, S., Spaeth, J.-M., Neuman, P.J., and MacFarlane, D.R., Photoluminescence and crystallization in europium-doped fluorobromozirconate glass-ceramics, J. Non-Cryst. Solids, 2001, vol. 284, pp. 237–242. CrossRefGoogle Scholar
  8. 8.
    Brekhovskikh, M.N., Dmitruk, L.N., Moiseeva, L.V., and Fedorov, V.A., Glasses based on fluorides of metals of the I–IV groups: synthesis, properties and application, Inorg. Mater., 2009, vol. 45, no. 13, pp. 1477–1493. CrossRefGoogle Scholar
  9. 9.
    Batygov, S., Brekhovskikh, M., Moiseeva, L., Zhidkova, I., and Yurtaeva, S., Optical properties and X-ray luminescence of fluorohafnate glass doping with EuF2, J. Non-Cryst. Solids, 2018, vol. 480, pp. 57–60. CrossRefGoogle Scholar
  10. 10.
    Brekhovskikh, M.N., Zhidkova, I.A., Fedorov, V.A., Moiseeva, L.V., and Batygov, S.Kh., Glasses on the basis of heavy metal fluorides, Inorg. Mater., 2015, vol. 51, no. 13, pp. 1348–1361. CrossRefGoogle Scholar
  11. 11.
    Buñuel, M.A., Alcalá, R., and Cases, R., Optical study of Mn2+ ions environments in fluorochlorozirconate and fluorobromozirconate glasses, J. Phys. Condens. Matter, 1998, vol. 10, pp. 9343–9358. CrossRefGoogle Scholar
  12. 12.
    Brekhovskikh, M.N., Batygov, S.Kh., Solodovnikov, S.P., Moiseeva, L.V., Zhidkova, I.A., Denisov, G.L., and Fedorov, V.A., Optical properties and electron paramagnetic resonance of MnO2-doped fluorozirconate glasses, Inorg. Mater., 2018, vol. 54, no. 11, pp. 1157–1161. CrossRefGoogle Scholar
  13. 13.
    Brekhovskikh, M.N., Solodovnikov, S.P., Moiseeva, L.V., Zhidkova, I.A., Denisov, G.L., and Fedorov, V.A., EPR spectra and distribution of manganese ions in modified fluorozirconate glasses, Inorg. Mater., 2019, vol. 55, no. 7, pp. 710–714. CrossRefGoogle Scholar
  14. 14.
    Bhavani, P., Nagalakshmi, T.V., Iqbal, A.W., and Emmanuel, K.A., Structural study of PbO–PbF2–B2O3 glass system doped with MnO through spectroscopic and magnetic properties, J. Appl. Chem., 2013, vol. 2, no. 2, pp. 328–337.Google Scholar
  15. 15.
    Kück, S., Hartung, S., Hurling, S., Petermann, K., and Huber, G., Optical transitions in Mn3+-doped garnets, Phys. Rev. B: Condens. Matter Mater. Phys., 1998, vol. 57, pp. 2203–2216. CrossRefGoogle Scholar
  16. 16.
    Tanabe, Y. and Sugano, S., On the absorption spectra of complex ions II, J. Phys. Soc. Jpn., 1954, vol. 9, pp. 776–779. CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. Kh. Batygov
    • 1
  • M. N. Brekhovskikh
    • 2
    Email author
  • L. V. Moiseeva
    • 1
  • V. N. Makhov
    • 3
  • N. Yu. Kirikova
    • 3
  • V. E. Shukshin
    • 1
  • V. A. Fedorov
    • 2
  1. 1.Prokhorov General Physics Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  3. 3.Lebedev Institute of Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations