Advertisement

Inorganic Materials

, Volume 55, Issue 11, pp 1132–1137 | Cite as

A Comparative Study of the Structure and Chemical Homogeneity of LiNbO3:Mg(~5.3 mol %) Crystals Grown from Charges of Different Origins

  • N. V. Sidorov
  • L. A. Bobreva
  • N. A. TeplyakovaEmail author
  • M. N. Palatnikov
  • O. V. Makarova
Article
  • 3 Downloads

Abstract—LiNbO3:Mg(~5.3 mol %) crystals grown from directly and homogeneously doped charges have been studied using a number of characterization techniques. Both crystals offer high chemical homogeneity, with an even Mg distribution over the boule. At the same time, the estimated effective distribution coefficient is larger in the homogeneously doped LiNbO3:Mg crystal. Moreover, the homogeneously doped crystal has a more ordered system of hydrogen bonds. Our results suggest that the distinctions between the fine structural features and chemical homogeneity of the crystals can be due to the effect of organic inclusions with rigid covalent bonds on the structure and physical characteristics of the growth charge prepared using a homogeneously doped Nb2O5:Mg precursor.

Keywords:

lithium niobate single crystal growth charge direct and homogeneous doping IR spectroscopy optical spectroscopy 

Notes

REFERENCES

  1. 1.
    Palatnikov, M.N., Sidorov, N.V., Makarova, O.V., and Biryukova, I.V., Fundamental’nye aspekty tekhnologii sil’no legirovannykh kristallov niobata litiya (Fundamental Aspects of the Technology of Heavily Doped Lithium Niobate Crystals), Apatity: Kol’sk. Nauchn. Tsentr Ross. Akad. Nauk, 2017.Google Scholar
  2. 2.
    Masloboeva, S.M., Palatnikov, M.N., Arutyunyan, L.G., and Ivanenko, D.V., Methods for the preparation of doped charges for lithium niobate single-crystal growth, Izv. S.-Peterburg. Gos. Tekhnol. Inst., 2017, vol. 38, no. 64, pp. 34–43.Google Scholar
  3. 3.
    Palatnikov, M.N., Biryukova, I.V., Makarova, O.V., Sidorov, N.V., and Efremov, V.V., Growth of large LiNbO3〈Mg〉 crystals, Inorg. Mater., 2013, vol. 49, no. 3, pp. 288–295.  https://doi.org/10.1134/S002016851303014X CrossRefGoogle Scholar
  4. 4.
    Palatnikov, M.N., Biryukova, I.V., Makarova, O.V., Efremov, V.V., Kravchenko, O.E., Skiba, V.I., Sidorov, N.V., and Efremov, I.N., Growth of heavily doped LiNbO3〈Zn〉 crystals, Inorg. Mater., 2015, vol. 51, no. 4, pp. 375–379.  https://doi.org/10.1134/S0020168515040123 CrossRefGoogle Scholar
  5. 5.
    Masloboeva, S.M., Masloboev, V.A., Arutyunyan, L.G., and Balabanov, Yu.I., RF Patent 2 221 746, Byull. Izobret., 2004, no. 2.Google Scholar
  6. 6.
    Palatnikov, M.N., Biryukova, I.V., Masloboeva, S.M., Makarova, O.V., Kravchenko, O.E., Yanichev, A.A., and Sidorov, N.V., Structure and optical homogeneity of LiNbO3〈Mg〉 crystals grown from different charges, Inorg. Mater., 2013, vol. 49, no. 7, pp. 715–720.  https://doi.org/10.1134/S0020168513060083 CrossRefGoogle Scholar
  7. 7.
    Palatnikov, M.N., Birukova, I.V., Masloboeva, S.M., Makarova, O.V., Manukovskaya, D.V., and Sidorov, N.V., The search of homogeneity of LiNbO3 crystals grown of charge with different genesis, J. Cryst. Growth, 2014, vol. 386, pp. 113–118.  https://doi.org/10.1016/j.jcrysgro.2013.09.038 CrossRefGoogle Scholar
  8. 8.
    Palatnikov, M.N., Biryukova, I.V., Makarova, O.V., Sidorov, N.V., Teplyakova, N.A., Masloboeva, S.M., and Efremov, V.V., Effect of the growth charge preparation procedure on the physicochemical and optical properties of LiNbO3:Mg crystals, Perspekt. Mater., 2016, no. 1, pp. 5–13.Google Scholar
  9. 9.
    Sidorov, N.V., Bobreva, L.A., Masloboeva, S.M., Teplyakova, N.A., Palatnikov, M.N., and Novikova, N.N., Synthesis of homogeneously zinc doped lithium niobate growth charge and comparative study of LiNbO3:Zn crystals of different origins, Perspekt. Mater., 2019, no. 2, pp. 68–78.Google Scholar
  10. 10.
    Sidorov, N.V., Volk, T.R., Mavrin, B.N., and Kalinnikov, V.T., Niobat litiya: defekty, fotorefraktsiya, kolebatel’nyi spektr, polyaritony (Lithium Niobate: Defects, Photorefractive Properties, Vibrational Spectrum, and Polaritons), Moscow: Nauka, 2003.Google Scholar
  11. 11.
    Palatnikov, M.N., Biryukova, I.V., Sidorov, N.V., Denisov, A.V., Kalinnikov, V.T., Smith, P.G.R., and Shur, V.Ya., Growth and concentration dependencies of rare-earth doped lithium niobate single crystals, J. Cryst. Growth, 2006, vol. 291, pp. 390–397.  https://doi.org/10.1016/j.jcrysgro.2006.03.022 CrossRefGoogle Scholar
  12. 12.
    Palatnikov, M.N., Sidorov, N.V., Biryukova, I.V., Shcherbina, O.B., and Kalinnikov, V.T., Granulated starting mixture for the growth of lithium niobate single crystals, Perspekt. Mater., 2011, no. 2, pp. 93–97.Google Scholar
  13. 13.
    Lengyel, K., Peter, A., Kovacs, L., Corradi, G., Palfavi, L., Hebling, J., Unferdorben, M., Dravecz, G., Hajdara, I., Szaller, Zs., and Polgar, K., Growth, defect structure, and THz application of stoichiometric lithium niobate, Appl. Phys. Rev., 2015, vol. 2, pp. 040 601–040 628. https://doi.org/10.1063/1.4929917Google Scholar
  14. 14.
    Huheey, J.E., Inorganic Chemistry: Principles of Structure and Reactivity, New York: Harper and Row, 1983.Google Scholar
  15. 15.
    Huang, D.H., Yang, J.S., Cao, Q.L., Wan, M.J., Li, Q., Sun, L., and Wang, F.H., Effect of Mg and Fe doping on optical absorption of LiNbO3 crystal through first principles calculations, Chin. Phys. Lett., 2014, vol. 31, no. 3, paper 037 103.  https://doi.org/10.1088/0256-307X/31/3/037103
  16. 16.
    Li, Ya., Li, L., Cheng, X., and Zhao, X., Microscopic properties of Mg in Li and Nb sites of LiNbO3 by first-principle hybrid functional: formation and related optical properties, J. Phys. Chem. C, 2017, vol. 121, pp. 8968–8975.  https://doi.org/10.1021/acs.jpcc.7b01274 CrossRefGoogle Scholar
  17. 17.
    Cabrera, J.M., Olivares, J., Carrascosa, M., Rams, J., Müller, R., and Diéguez, E., Hydrogen in lithium niobate, Adv. Phys., 1996, vol. 45, no. 5, pp. 349–392.  https://doi.org/10.1080/00018739600101517 CrossRefGoogle Scholar
  18. 18.
    Iyi, N., Kitamura, K., Izumi, F., Yamamoto, J.K., Hayashi, T., Asano, H., and Kimura, S., Comparative study of defect structures in lithium niobate with different compositions, J. Solid State Chem., 1992, vol. 101, pp. 340–352.  https://doi.org/10.1016/0022-4596(92)90189-3 CrossRefGoogle Scholar
  19. 19.
    Klauer, S., Wöhlecke, M., and Kapphan, S., Influence of H–D isotopic substitution on the protonic conductivity of LiNbO3, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, vol. 45, pp. 2786–2799.  https://doi.org/10.1103/PhysRevB.45.2786 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. V. Sidorov
    • 1
  • L. A. Bobreva
    • 1
  • N. A. Teplyakova
    • 1
    Email author
  • M. N. Palatnikov
    • 1
  • O. V. Makarova
    • 1
  1. 1.Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials (Separate Division), Kola Scientific Center (Federal Research Center), Russian Academy of SciencesApatityRussia

Personalised recommendations