Advertisement

Inorganic Materials

, Volume 55, Issue 9, pp 887–891 | Cite as

Ferromagnetism of Alloys Based on Mn- and Ni-Doped Indium Antimonide

  • O. N. PashkovaEmail author
  • A. D. Izotov
  • V. P. Sanygin
  • N. N. Efimov
  • M. G. Vasil’ev
Article
  • 22 Downloads

Abstract—

We have synthesized polycrystalline indium antimonide samples codoped with Mn (1 at %) and Ni (0.8, 1, or 1.2 at %). The magnetic properties of these materials have been shown to be dominated by Ni2 –хMnSb (0 < х < 1) clusters, whose composition and Curie temperature depend on Ni content. The samples exhibit metallic behavior of conductivity and have a positive magnetoresistance below room temperature.

Keywords:

magnetic semiconductors magnetic clusters spintronics 

Notes

ACKNOWLEDGMENTS

We are grateful to A.V. Filatov and P.N. Vasil’ev for their assistance in the magnetic measurements.

FUNDING

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, basic research).

REFERENCES

  1. 1.
    Hayashi, T., Tanaka, M., Nishinaga, T., and Shimada, H., Magnetic and magnetotransport properties of new III–V diluted magnetic semiconductors: GaMnAs, J. Appl. Phys., 1997, vol. 81, no. 8, pp. 4865–4867.  https://doi.org/10.1063/1.364859 CrossRefGoogle Scholar
  2. 2.
    Matsukura, F., Ohno, H., Shen, A., and Sugawara, Y., Transport properties and origin of ferromagnetism in (Ga,Mn)As, Phys. Rev. B: Condens. Matter Mater. Phys., 1998, vol. 57, no. 4, pp. 2037–2040.  https://doi.org/10.1103/PhysRevB.57.R2037 CrossRefGoogle Scholar
  3. 3.
    Ohno, H., Matsukura, F., Omiya, T., and Akiba, N., Spin-dependent tunneling and properties of ferromagnetic (Ga,Mn)As, J. Appl. Phys., 1999, vol. 85, no. 8, pp. 4277–4282.  https://doi.org/10.1063/1.370343 CrossRefGoogle Scholar
  4. 4.
    Yanagi, S., Kuga, K., Slupinski, T., and Munekata, H., Carrier-induced ferromagnetic order in the narrow gap III–V magnetic alloy semiconductor (In,Mn)Sb, Phys. E (Amsterdam, Neth.), 2004, vol. 20, no. 3, pp. 333–337.  https://doi.org/10.1016/j.physe.2003.08.029
  5. 5.
    Matsukura, F., Abe, E., and Ohno, H., Magnetotransport properties of (Ga,Mn)Sb, J. Appl. Phys., 2000, vol. 87, no. 9, pp. 6442–6444.  https://doi.org/10.1063/1.372732 CrossRefGoogle Scholar
  6. 6.
    Adhikari, T. and Basu, S., Electrical properties of gallium manganese antimonide: a new diluted magnetic semiconductor, Jpn. J. Appl. Phys., 1994, vol. 33, no. 8, pp. 4581–4582.  https://doi.org/10.1143/JJAP.33.4581 CrossRefGoogle Scholar
  7. 7.
    Akinaga, H., Borghs, G., Miyanishi, S., Asamitsu, A., et al., Negative magnetoresistance in GaAs with magnetic MnAs nanoclusters, Appl. Phys. Lett., 1998, vol. 72, no. 25, pp. 3368–3370.  https://doi.org/10.1063/1.121606 CrossRefGoogle Scholar
  8. 8.
    Pashkova, O.N., Izotov, A.D., Sanygin, V.P., and Filatov, A.V., Cluster magnetism in doped InSb, Russ. J. Inorg. Chem., 2014, vol. 59, no. 7, pp. 688–691.  https://doi.org/10.1134/S0036023614070183 CrossRefGoogle Scholar
  9. 9.
    Pashkova, O.N., Izotov, A.D., Sanygin, V.P., and Filatov, A.V., Ferromagnetism of GaSb (2% Mn) Alloy, Russ. J. Inorg Khim., 2014, vol. 59, no. 11, pp. 1324–1327.  https://doi.org/10.1134/S0036023614110187 CrossRefGoogle Scholar
  10. 10.
    Kilanski, L., Fedorchenko, I.V., Gorska, M., et al., Magnetoresistance control in granular Zn1 – x yCdxMnyGeAs2 nanocomposite ferromagnetic semiconductors, J. Appl. Phys., 2015, vol. 118, no. 10, paper 103 906.  https://doi.org/10.1063/1.4930047
  11. 11.
    Fedorchenko, I.V., Kilanski, L., Zakharchuk, I., Geydt, P., Lahderanta, E., Vasiliev, P.N., Simonenko, N.P., Aronov, A.N., Dobrowolski, W., and Marenkin, S.F., Composites based on self-assembled MnAs ferromagnet nanoclusters embedded in ZnSnAs2 semiconductor, J. Alloys Compd., 2015, vol. 650, pp. 277–284.  https://doi.org/10.1016/j.jallcom.2015.08.006 CrossRefGoogle Scholar
  12. 12.
    Talantsev, A.D., Koplak, O.V., and Morgunov, R.B., Ferromagnetism and microwave magnetoresistance of GaMnSb films, Phys. Solid State, 2015, vol. 57, no. 2, pp. 322–330.CrossRefGoogle Scholar
  13. 13.
    Allwood, D.A., Gang, X., and Cowburn, R.P., Domain wall diodes in ferromagnetic planar nanowires, Appl. Phys. Lett., 2004, vol. 85, no. 14, pp. 2848–2850.  https://doi.org/10.1063/1.1802388 CrossRefGoogle Scholar
  14. 14.
    Tejada, J., Chudnovsky, E.M., Hernandez, J.M., and Spiller, T.P., Magnetic qubits as hardware for quantum computers, Nanotechnology, 2001, vol. 12, no. 2, pp. 181–186.  https://doi.org/10.1088/0957-4484/12/2/323 CrossRefGoogle Scholar
  15. 15.
    Tserkovnyak, Y. and Brataas, A., Enhanced Gilber damping in thin ferromagnetic films, Phys. Rev. Lett., 2002, vol. 88, no. 11, paper 117 601.  https://doi.org/10.1103/PhysRevLett.88.117601
  16. 16.
    Bason, Y., Klein, L., Yau, J.B., Hong, X., Hoffman, J., and Ahn, C.H., Planar Hall-effect magnetic random access memory, J. Appl. Phys., 2006, vol. 99, no. 8, paper 08R701.  https://doi.org/10.1063/1.2162824
  17. 17.
    Acet, M., Manosa, L., and Planes, A., Magnetic-field-induced effects in martensitic Heusler-based magnetic shape memory alloys, Handbook of Magnetic Materials, 2011, vol. 19, pp. 231–289.  https://doi.org/10.1016/S1567-2719(11)19004-6
  18. 18.
    Yarzhemsky, V.G., Murashov, S.V., and Izotov, A.D., Calculation of the electronic structure and exchange interaction in the InSb and GaAs semiconductors codoped with Mn and Ni, Inorg. Mater., 2017, vol. 53, no. 11, pp. 1131–1135.  https://doi.org/10.1134/S0020168517110176 CrossRefGoogle Scholar
  19. 19.
    Otto, M.J., Feil, H., van Woerden, R.A., Wijngaard, J., van der Valk, P.J., van Bruggen, C.F., and Haas, C., Electronic-structure and magnetic, electrical and optical-properties of ferromagnetic Heusler alloys, J. Magn. Magn. Mater., 1987, vol. 70, nos. 1–3, pp. 33–38.  https://doi.org/10.1016/0304-8853(87)90354-4 CrossRefGoogle Scholar
  20. 20.
    Kanomata, T., Shirakawa, K., and Kaneko, T., Effect of hydrostatic-pressure on the Curie-temperature of the Heusler alloys Ni2MnAl, Ni2MnGa, Ni2MnIn, Ni2MnSn and Ni2MnSb, J. Magn. Magn. Mater., 1987, vol. 65, pp. 76–82.  https://doi.org/10.1016/0304-8853(87)90312-X CrossRefGoogle Scholar
  21. 21.
    Webster, P.J., Chemical order and magnetic properties of the Ni2 – xMnSb system, J. Magn. Magn. Mater., 1984, vol. 42, pp. 300–308.  https://doi.org/10.1016/0304-8853(84)90113-6 CrossRefGoogle Scholar
  22. 22.
    Hordequin, C., Lelievre-Bema, E., and Pierre, J., Magnetization density in the half-metallic ferromagnet NiMnSb, J. Phys. B, 1997, vols. 234–236, pp. 602–604.  https://doi.org/10.1016/S0921-4526(96)01207-0 CrossRefGoogle Scholar
  23. 23.
    Ivanov, V.A., Pashkova, O.N., Ugolkova, E.A., Sanygin, V.P., and Galera, R.M., Cluster ferromagnetism in Mn-doped InSb, Inorg. Mater., 2008, vol. 44, no. 10, pp. 1041–1046.  https://doi.org/10.1134/S0020168508100026 CrossRefGoogle Scholar
  24. 24.
    Stognei, O.V., Sitnikov, A.V., Kalinin, Yu.E., Avdeev, S.F., and Kopytin, M.N., Isotropic positive magnetoresistance in Co–Al2On nanocomposites, Phys. Solid State, 2007, vol. 49, no. 1, pp. 164–170.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. N. Pashkova
    • 1
    Email author
  • A. D. Izotov
    • 1
  • V. P. Sanygin
    • 1
  • N. N. Efimov
    • 1
  • M. G. Vasil’ev
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations