Advertisement

Inorganic Materials

, Volume 55, Issue 9, pp 934–938 | Cite as

Garnet Polyhedron in the Isobaric–Isothermal Y2O3–Bi2O3–Fe2O3–Ga2O3 Tetrahedron

  • G. D. NipanEmail author
  • M. N. Smirnova
  • G. E. Nikiforova
Article
  • 15 Downloads

Abstract—

X-ray diffraction data have been used to construct the composition polyhedron of the (Y,Bi)3(Fe,Ga)5O12 garnet phase (18 vertices and 11 faces) in the isobaric–isothermal Y2O3–Bi2O3–Fe2O3–Ga2O3 composition tetrahedron. We have identified nine crystalline phases involved in multiphase equilibria with the garnet phase, paying particular attention to equilibria involving the garnet and perovskite phases.

Keywords:

garnet composition tetrahedron homogeneity region cation substitutions 

Notes

FUNDING

This work was supported by the Russian Science Foundation, project no. 17-73-10409.

REFERENCES

  1. 1.
    Kumar, P., Maydykovskiy, A.I., Levy, M., Dubrovina, N.V., and Aktsipetrov, O.A., Second harmonic generation study of internally-generated strain in bismuth-substituted iron garnet films, Opt. Express, 2010, vol. 18, no. 2, pp. 1076–1084.  https://doi.org/10.1364/OE.18.001076 CrossRefPubMedGoogle Scholar
  2. 2.
    Randoshkin, V.V. and Chervonenkis, A.Ya., Prikladnaya magnitooptika (Applied Magneto-Optics), Moscow: Energoatomizdat, 1990.Google Scholar
  3. 3.
    Smirnova, M.E., Nipan, G.D., and Nikiforova, G.E., (Y1 – xBix)3(Fe1 – yGay)O12 solid solution region in the Ieneke diagram, Inorg. Mater., 2018, vol. 54, no. 7, pp. 683–688.  https://doi.org/10.1134/S002016851807018X CrossRefGoogle Scholar
  4. 4.
    Smirnova, M.E., Nipan, G.D., and Nikiforova, G.E., Garnet solid solution (Y1 – xBix)3Fe2.5Ga2.5O12, Dokl. Chem., 2018, vol. 478, no. 1, pp. 12–15.  https://doi.org/10.1134/S0012500818010056 CrossRefGoogle Scholar
  5. 5.
    Smirnova, M.E., Nipan, G.D., and Nikiforova, G.E., Concentration space of homogeneous garnet in the system Ga2O3–(Y,Bi)3(Fe,Ga)5O12–Fe2O3, Dokl. Chem., 2018, vol. 480, no. 1, pp. 99–102.  https://doi.org/10.1134/S0012500818050087 CrossRefGoogle Scholar
  6. 6.
    Ekhilikar, S. and Bichile, G.K., Synthesis and structural characterization of (Bi2O3)1 – x(Y2O3)x and (Bi2O3)1 – x(Gd2O3)x solid solutions, Bull. Mater. Sci., 2004, vol. 27, no. 1, pp. 19–22.CrossRefGoogle Scholar
  7. 7.
    Roulland, F., Lefevre, C., Thomasson, A., and Viart, N., Study of Ga(2 – x)FexO3 solid solution: optimisation of the ceramic processing, J. Eur. Ceram. Soc., 2013, vol. 33, no. 5, pp. 1029–1035.  https://doi.org/10.1016/j.jeurceramsoc.2012.11.014 CrossRefGoogle Scholar
  8. 8.
    Giaquinta, D.M., Papaefthymiou, G.C., Davis, W.M., and Zur Loye, H.-C., Synthesis, structure, and magnetic properties of the layered bismuth transition metal oxide solid solution Bi2Fe4 – xGaxO9, J. Solid State Chem., 1992, vol. 99, no. 1, pp. 120–133.  https://doi.org/10.1016/0022-4596(92)90296-8 CrossRefGoogle Scholar
  9. 9.
    Zhang, Y., Yang, J., Xu, J., Gao, Q., and Hong, Z., Controllable synthesis of hexagonal and orthorhombic YFeO3 and their visible-light photocatalytic activities, Mater. Lett., 2012, vol. 81, pp. 1–4.  https://doi.org/10.1016/j.matlet.2012.04.080 CrossRefGoogle Scholar
  10. 10.
    Denisov, V.M., Belousova, N.V., Zhereb, V.P., Denisova, L.T., and Skorikov, V.M., Oxide compounds of Bi2O3−Fe2O3 system: I. The obtaining and phase equilibriums, J. Siberian Federal Univ. Chem., 2012, vol. 5, no. 2, pp. 146–167.Google Scholar
  11. 11.
    Mishra, R.K., Pradhan, D.K., Choudhary, R.N.P., and Banerjee, A., Effect of yttrium on improvement of dielectric properties and magnetic switching behavior in BiFeO3, J. Phys.: Condens. Matter, 2008, vol. 20, paper 045 218.  https://doi.org/10.1088/0953-8984/20/04/045218
  12. 12.
    Lu, J., Qiao, L.J., Fu, P.Z., and Wu, Y.C., Phase equilibrium of Bi2O3–Fe2O3 pseudo-binary system and growth of BiFeO3 single crystal, J. Cryst. Growth, 2011, vol. 318, no. 1, pp. 936–941.  https://doi.org/10.1016/j.jcrysgro.2010.10.181 CrossRefGoogle Scholar
  13. 13.
    Meera, A.V., Ganesan, R., and Gnanakeran, T., Partial phase diagram of Bi–Fe–O system and the standard molar Gibbs energy of formation of Bi2Fe4O9, J. Alloys Compd., 2017, vol. 692, pp. 841–847.  https://doi.org/10.1016/j.jallcom.2016.09.070 CrossRefGoogle Scholar
  14. 14.
    Kazenas, E.K. and Tsvetkov, Yu.V., Termodinamika ispareniya oksidov (Thermodynamics of Oxide Vaporization), Moscow: LKI, 2008.Google Scholar
  15. 15.
    Mukasyan, A.S., Epstein, P., and Dinka, P., Solution combustion synthesis of nanomaterials, Proc. Combust. Inst., 2007, vol. 31, no. 2, pp. 1789–1795.CrossRefGoogle Scholar
  16. 16.
    Zhuang, N., Chen, W., Shi, L., Nie, J., Hu, X., Zhao, B., Lin, S., and Chen, J., A new technique to grow incongruent melting Ga:YIG crystals: the edge-defined film-fed growth method, Appl. Crystallogr., 2013, vol. 46, no. 2, pp. 746–751.  https://doi.org/10.1107/S002188981301025X CrossRefGoogle Scholar
  17. 17.
    Lee, H., Yoon, Y., Yoo, H., Choi, S.A., Kim, K., Choi, Y., Melikyan, H., Ishibashi, T., Friedman, B., and Lee, K., Magnetic and FTIR studies of BixY3 – xFe5O12 (x = 0, 1, 2) powders prepared by the metal organic decomposition method, J. Alloys Compd., 2011, vol. 509, pp. 9434–9440.  https://doi.org/10.1016/j.jallcom.2011.07.005 CrossRefGoogle Scholar
  18. 18.
    Pigošová, J., Cigáň, A., and Maňka, J., Thermal synthesis of bismuth-doped yttrium iron garnet for magneto-optical imaging, Meas. Sci. Rev., 2008, vol. 8, sect. 3, no. 5, pp. 126–128.  https://doi.org/10.2478/v10048-008-0030-y
  19. 19.
    Zhao, H., Zhou, J., Bai, Y., Gui, Z., and Li, L., Effect of Bi-substitution on the dielectric properties of polycrystalline yttrium iron garnet, J. Magn. Magn. Mater., 2004, vol. 280, pp. 208–213.  https://doi.org/10.1016/j.jmmm.2004.03.014 CrossRefGoogle Scholar
  20. 20.
    Jia, N., Huaiwu, Z., Li, J., Liao, Y., Jin, L., Liu, C., and Harris, V.C., Polycrystalline Bi substituted YIG ferrite processed via low temperature sintering, J. Alloys. Compd., 2017, vol. 695, pp. 931–936.  https://doi.org/10.1016/j.jallcom.2016.10.201 CrossRefGoogle Scholar
  21. 21.
    Li, H. and Guo, Y., Synthesis and characterization of YIG nanoparticles by low temperature sintering, J. Mater. Sci.: Mater. Electron., 2018, vol. 29, no. 11, pp. 9369–9374.  https://doi.org/10.1007/s10854-018-8968-5 CrossRefGoogle Scholar
  22. 22.
    Amighian, J., Hasanpour, A., and Mozaffari, M., The effect of Bi mole ratio on phase formation in BixY3 – xFe5O12 nanoparticles, Phys. Status Solidi C, 2004, vol. 1, no. 7, pp. 1769–1771.  https://doi.org/10.1002/pssc.200304396 CrossRefGoogle Scholar
  23. 23.
    Rehspringer, J.-L., Bursik, J., Niznansky, D., and Klarikova, A., Characterisation of bismuth-doped yttrium iron garnet layers prepared by sol–gel process, J. Magn. Magn. Mater., 2000, vol. 211, pp. 291–295.  https://doi.org/10.1016/S0304-8853(99)00749-0 CrossRefGoogle Scholar
  24. 24.
    Smirnova, M.N., Nikiforova, G.E., Goeva, L.V., and Simonenko, N.P., One-stage synthesis of (Y0.5Bi0.5)3(Fe0.5Ga0.5)5O12 garnet using the organometallic gel auto-combustion approach, Ceram. Int., 2019, vol. 45, pp. 4509–4513.  https://doi.org/10.1016/j.ceramint.2018.11.133 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. D. Nipan
    • 1
    Email author
  • M. N. Smirnova
    • 1
  • G. E. Nikiforova
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations