Advertisement

Inorganic Materials

, Volume 55, Issue 9, pp 964–967 | Cite as

Fergusonite–Scheelite Phase Transition of Praseodymium Orthoniobate

  • G. E. NikiforovaEmail author
  • A. V. Khoroshilov
  • K. S. Gavrichev
  • A. V. Knyazev
  • S. S. Knyazeva
Article

Abstract—

Polycrystalline praseodymium orthoniobate, PrNbO4, has been studied by high-temperature X‑ray diffraction and differential scanning calorimetry. We have determined the temperature of the fergusonite–scheelite structural phase transition and shown it to be a second-order transition.

Keywords:

heat capacity differential scanning calorimetry high-temperature X-ray diffraction 

Notes

ACKNOWLEDGMENTS

In this study, we used equipment at the Shared Physical Characterization Facilities Center, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

FUNDING

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, basic research) and the Russian Foundation for Basic Research (grant no. 18-03-00343).

REFERENCES

  1. 1.
    Li, C., Bayliss, R.D., and Skinner, S.J., Crystal structure and potential interstitial oxide ion conductivity of LnNbO4 and LnNb0.92W0.08O4.04 (Ln = La, Pr, Nd), Solid State Ionics, 2014, vol. 262, pp. 530–535.  https://doi.org/10.1016/j.ssi.2013.12.023 CrossRefGoogle Scholar
  2. 2.
    Cao, Y., Duan, N., Yan, D., Chi, B., Pu, J., and Jian, L., Enhanced electrical conductivity of LaNbO4 by A-site substitution, Int. J. Hydrogen Energy, 2016, vol. 41, pp. 20  633–20 639.  https://doi.org/10.1016/j.ijhydene.2016.08.056
  3. 3.
    Haugsrud, R. and Norby, T., Proton conduction in rare-earth ortho-niobates and ortho-tantalates, Nat. Mater., 2006, vol. 5, pp. 193–196.  https://doi.org/10.1038/nmat1591 CrossRefGoogle Scholar
  4. 4.
    Magrasó, A., Fontaine, M.-L., Bredesen, R., Haugsrud, R., and Norby, T., Cathode compatibility, operation, and stability of LaNbO4-based proton conducting fuel cells, Solid State Ionics, 2014, vol. 262, pp. 382–387.  https://doi.org/10.1016/j.ssi.2013.12.009 CrossRefGoogle Scholar
  5. 5.
    Balamurugan, C., Lee, D.-W., and Subramania, A., Preparation and LPG-gas sensing characteristics of p‑type semiconducting LaNbO4 ceramic material, Appl. Surf. Sci., 2013, vol. 283, pp. 58–64.  https://doi.org/10.1016/j.apsusc.2013.06.013 CrossRefGoogle Scholar
  6. 6.
    Dzierzgowski, K., Wachowski, S., Gojtowska, W., Lewandowska, I., Jasiński, P., Gazda, M., and Mielewczyk-Gryń, A., Praseodymium substituted lanthanum orthoniobate: electrical and structural properties, Ceram. Int., 2018, vol. 44, no. 7, pp. 8210–8215.  https://doi.org/10.1016/j.ceramint.2018.01.270 CrossRefGoogle Scholar
  7. 7.
    Rooksby, H.P. and White, E.A.D., The structures of 1 : 1 compounds of rare earth oxides with niobia and tantala, Acta Crystallogr., 1963, vol. 16, pp. 888–890.  https://doi.org/10.1107/S0365110X63002395 CrossRefGoogle Scholar
  8. 8.
    Sarin, P., Hughes, R.W., Lowry, D.R., Apostolov, Z.D., and Kriven, W.M., High-temperature properties and ferroelastic phase transitions in rare-earth niobates (LnNbO4), J. Am. Ceram. Soc., 2014, vol. 97, pp. 3307–3319.  https://doi.org/10.1111/jace.13095 CrossRefGoogle Scholar
  9. 9.
    Jian, L. and Wayman, C., Monoclinic-to-tetragonal phase transformation in a ceramic rare-earth orthoniobate LaNbO4, J. Am. Ceram. Soc., 1997, vol. 80, pp. 803–806.  https://doi.org/10.1111/j.1151-2916.1997.tb02905.x CrossRefGoogle Scholar
  10. 10.
    Kukueva, L.L., Ivanova, L.A., and Venevtsev, Yu.N., Ferroelastics with the fergusonite type structure, Ferroelectrics, 1984, vol. 55, pp. 129–133.  https://doi.org/10.1080/00150198408015351 CrossRefGoogle Scholar
  11. 11.
    Brixner, L.H., Whitney, J.F., Zumsteg, F.C., and Jones, G.A., Ferroelasticity in the LnNbO4-type rare earth niobates, Mater. Res. Bull., 1977, vol. 12, pp. 17–24.  https://doi.org/10.1016/0025-5408(77)90084-8 CrossRefGoogle Scholar
  12. 12.
    Nikiforova, G., Khoroshilov, A., Tyurin, A., Gurevich, V., and Gavrichev, K., Heat capacity and thermodynamic properties of lanthanum orthoniobate, J. Chem. Thermodyn., 2019, vol. 132, pp. 44–53.  https://doi.org/10.1016/j.jct.2018.12.041 CrossRefGoogle Scholar
  13. 13.
    Kondrat’eva, O.N., Nikiforova, G.E., Tyurin, A.V., Khoroshilov, A.V., Gurevich, V.M., and Gavrichev, K.S., Thermodynamic properties of, and fergusonite-to-scheelite phase transition in gadolinium orthoniobate GdNbO4 ceramics, J. Alloys Compd., 2019, vol. 779, pp. 660–666.  https://doi.org/10.1016/j.jallcom.2018.11.272 CrossRefGoogle Scholar
  14. 14.
    McCarthy, G.J., X-ray studies of RENbO4 compounds, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1971, vol. 27, pp. 2285–2286.  https://doi.org/10.1107/S0567740871005697 CrossRefGoogle Scholar
  15. 15.
    Knyazev, A.V., Smirnova, N.N., Mączka, M., Knyazeva, S.S., and Letyanina, I.A., Thermodynamic and spectroscopic properties of spinel with the formula Li4/3Ti5/3O4, Thermochim. Acta, 2013, vol. 559, pp. 40–45.  https://doi.org/10.1016/j.tca.2013.02.019 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. E. Nikiforova
    • 1
    Email author
  • A. V. Khoroshilov
    • 1
  • K. S. Gavrichev
    • 1
  • A. V. Knyazev
    • 2
  • S. S. Knyazeva
    • 2
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Lobachevsky State UniversityNizhny NovgorodRussia

Personalised recommendations