Inorganic Materials

, Volume 54, Issue 13, pp 1315–1329 | Cite as

Catalysts for the Steam Reforming and Electrochemical Oxidation of Methanol

  • A. A. Lytkina
  • N. V. Orekhova
  • A. B. Yaroslavtsev


Catalysts used for the steam reforming and electrochemical oxidation of methanol in fuel cells are briefly reviewed. The mechanisms of these processes are discussed. Most of the methanol steam reforming catalysts contain noble metals, copper, or their alloys supported on inorganic materials. The main laws governing the steam reforming process are extended to a wider range of alcohols. The electrochemical oxidation of methanol is catalyzed by noble metals and alloys based on them. The catalyst selectivity and activity is largely determined by the nature of the metallic catalyst. However, an equally important role is played by the supports, a variation of which provides not only an increase in the catalyst activity but also an improvement in the on-stream stability of the catalyst. An important role is played by both the chemical nature and the structure and morphology of the support. Using the example of the two processes, it is shown that the catalytic processes in the studied systems have a bifunctional nature. It is shown that the oxide support plays an important role in the water sorption, which accelerates the occurrence of both the steam reforming and electrocatalytic oxidation of alcohols.


catalysis catalysts steam reforming of alcohols electrocatalytic oxidation of alcohols direct methanol fuel cell bifunctional catalysis metallic catalysts oxide supports 



This work was performed under the state task to the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, and supported by the Federal Agency for Scientific Organizations of Russia.


  1. 1.
    Fortov, V.E. and Popel’, O.S., Energetika v sovremennom mire (Energy in the Modern World), Dolgoprudnyi: Intellekt, 2011.Google Scholar
  2. 2.
    Nair, B.K.R. and Harold, M.P., Hydrogen generation in a Pd membrane fuel processor: productivity effects during methanol steam reforming, Chem. Eng. Sci., 2006, vol. 61, pp. 6616–6636.CrossRefGoogle Scholar
  3. 3.
    Tsodikov, M.V., Kurdyumov, S.S., Konstantinov, G.I., Murzin, V.Y., Bukhtenko, O.V., and Maksimov, Y.V., Core-shell bifunctional catalyst for steam methane reforming resistant to H2S: activity and structure evolution, Int. J. Hydrogen Energy, 2015, vol. 40, pp. 2963–2970.CrossRefGoogle Scholar
  4. 4.
    Barbir, F., PEM Fuel Cells: Theory and Practice, Amsterdam: Elsevier, 2013.Google Scholar
  5. 5.
    Brunetti, A., Sun, Y., Caravella, A., Drioli, E., and Barbieri, G., Process intensification for greenhouse gas separation from biogas: More efficient process schemes based on membrane-integrated systems, Int. J. Greenhouse Gas Control, 2015, vol. 35, pp. 18–29.CrossRefGoogle Scholar
  6. 6.
    Tsodikov, M.V., Fedotov, A.S., Antonov, D.O., Uvarov, V.I., Bychkov, V.Yu., and Luck, F.C., Hydrogen and syngas production by dry reforming of fermentation products on porous ceramic membrane-catalytic converters, Int. J. Hydrogen Energy, 2016, vol. 41, pp. 2424–2431.CrossRefGoogle Scholar
  7. 7.
    Teplyakov, V.V., Shalygin, M.G., Kozlova, A.A., Chistyakov, A.V., Tsodikov, M.V., and Netrusov, A.I., Membrane technology in bioconversion of lignocellulose to motor fuel components, Petrol. Chem., 2017, vol. 57, no. 9, pp. 747–762.CrossRefGoogle Scholar
  8. 8.
    Palo, D.R., Dagle, R.A., and Holladay, J.D., Methanol steam reforming for hydrogen production, Chem. Rev., 2007, vol. 107, pp. 3992–4021.CrossRefPubMedGoogle Scholar
  9. 9.
    Mateos-Pedrero, C., Silva, H., Tanaka, D.A., Liguori, S., Iulianelli, A., Basile, A., and Mendes, A., CuO/ZnO catalysts for methanol steam reforming: the role of the support polarity ratio and surface area, Appl. Catal., B, 2015, vol. 174, pp. 67–76.CrossRefGoogle Scholar
  10. 10.
    Lytkina, A.A., Orekhova, N.V., Ermilova, M.M., and Yaroslavtsev, A.B., The influence of the support composition and structure (MxZr1 – xO2 – δ) of bimetallic catalysts on the activity in methanol steam reforming, Int. J. Hydrogen Energy, 2018, vol. 43, pp. 198–207.CrossRefGoogle Scholar
  11. 11.
    Basile, A., Iulianelli, A., Longo, T., Liguori, S., and De Falco, M., Pd-based selective membrane state-of-the-art, in Membrane Reactors for Hydrogen Production Processes, Marrelli, L., De Falco, M., and Iaquaniello, G., Eds., New York: Springer-Verlag, 2011, chap. 2, pp. 21–55.Google Scholar
  12. 12.
    Ievlev, V.M., Solntsev, K.A., Dontsov, A.I., Maksimenko, A.A., and Kannykin, S.V., Hydrogen permeability of thin condensed Pd–Cu foil: dependence on temperature and phase composition, Tech. Phys., 2016, vol. 61, no. 3, pp. 467–469.CrossRefGoogle Scholar
  13. 13.
    Piskin, F. and Öztürk, T., Combinatorial screening of Pd–Ag–Ni membranes for hydrogen separation, J. Membr. Sci., 2017, vol. 524, pp. 631–636.CrossRefGoogle Scholar
  14. 14.
    Ievlev, V.M., Maksimenko, A.A., Sitnikov, A.I., Chernyavskiy, A.S., Solntsev, K.A., and Dontsov, A.I., Composite metal-ceramic heterostructure for membranes of deep purification of hydrogen, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 4, pp. 586–589.CrossRefGoogle Scholar
  15. 15.
    Iulianelli, A., Alavi, M., Bagnato, G., Liguori, S., Wilcox, J., Rahimpour, M.R., Eslamlouyan, R., Anzelmo, B., and Basile, A., Supported Pd–Au membrane reactor for hydrogen production: membrane preparation, characterization and testing, Molecules, 2016, vol. 21, pp. 581–594.CrossRefGoogle Scholar
  16. 16.
    Iulianelli, A. and Basile, A., Hydrogen production from ethanol via inorganic membrane reactors technology: a review, Catal. Sci. Technol., 2011, vol. 1, pp. 366–379.CrossRefGoogle Scholar
  17. 17.
    Gallucci, F., Fernandez, E., Corengia, P., and van Sint Annaland, M., Recent advances on membranes and membrane reactors for hydrogen production, Chem. Eng. Sci., 2013, vol. 92, pp. 40–66.CrossRefGoogle Scholar
  18. 18.
    Arratibel, A., Astobieta, U., Pacheco Tanaka, D.A., van Sint Annaland, M., and Gallucci, F., N2, He and CO2 diffusion mechanism through nanoporous YSZ/γ–Al2O3 layers and their use in a pore-filled membrane for hydrogen membrane reactors, Int. J. Hydrogen Energy, 2013, vol. 41, no. 20, pp. 8732–8744.CrossRefGoogle Scholar
  19. 19.
    Brunetti, A., Barbieri, G., and Drioli, E., Pd-based membrane reactor for syngas upgrading, Energy Fuels, 2009, vol. 23, pp. 5073–5076.CrossRefGoogle Scholar
  20. 20.
    Basov, N.L., Ermilova, M.M., Orekhova, N.V., and Yaroslavtsev, A.B., Membrane catalysis in the dehydrogenation and hydrogen production processes, Russ. Chem. Rev., 2013, vol. 82, no. 4, pp. 352–368.CrossRefGoogle Scholar
  21. 21.
    Mironova, E.Yu., Ermilova, M.M., Orekhova, N.V., Muraviev, D.N., and Yaroslavtsev, A.B., Production of high purity hydrogen by ethanol steam reforming in membrane reactor, Catal. Today, 2014, vol. 236, pp. 64–69.CrossRefGoogle Scholar
  22. 22.
    Iulianelli, A., Liguori, S., Wilcox, J., and Basile, A., Advances on methane steam reforming to produce hydrogen through membrane reactors technology: a review, Catal. Rev. Sci. Eng., 2016, vol. 58, pp. 1–35.CrossRefGoogle Scholar
  23. 23.
    Lytkina, A.A., Orekhova, N.V., Ermilova, M.M., Belenov, S.V., Guterman, V.E., Efimov, M.N., and Yaroslavtsev, A.B., Bimetallic carbon nanocatalysts for methanol steam reforming in conventional and membrane reactors, Catal. Today, 2016, vol. 268, pp. 60–67.CrossRefGoogle Scholar
  24. 24.
    Pour, V., Barton, J., and Benda, A., Kinetics of catalyzed reaction of methanol with water vapor, Collect. Czech. Chem. Commun., 1975, vol. 40, pp. 2923–2934.CrossRefGoogle Scholar
  25. 25.
    Barton, J. and Pour, V., Kinetics of catalytic conversion of methanol at higher pressures, Collect. Czech. Chem. Commun., 1980, vol. 45, p. 3402.CrossRefGoogle Scholar
  26. 26.
    Santacesaria, E. and Carrá, S., Kinetics of catalytic steam reforming of methanol in a C STR reactor, Appl. Catal., 1983, vol. 5, pp. 345–358.CrossRefGoogle Scholar
  27. 27.
    Amphlett, J.C., Evans, M.J., Mann, R.F., and Weir, R.D., Hydrogen production by the catalytic steam reforming of methanol, Part 2: Kinetics of methanol decomposition using girdler G66B catalyst, Can. J. Chem. Eng., 1985, vol. 63, pp. 605–611.CrossRefGoogle Scholar
  28. 28.
    Iwasa, N., Kudo, S., Takahashi, H., Masuda, S., and Takezawa, N., Highly selective supported Pd catalysts for steam reforming of methanol, Catal. Lett., 1993, vol. 19, pp. 211–216.CrossRefGoogle Scholar
  29. 29.
    Takahashi, K., Takezawa, N., and Kobayashi, H., The mechanism of steam reforming of methanol over a copper-silica catalyst, Appl. Catal., 1982, vol. 2, pp. 363–366.CrossRefGoogle Scholar
  30. 30.
    Águila, G., Jiménez, J., Guerrero, S., Gracia, F., Chornik, B., Quinteros, S., and Araya, P., A novel method for preparing high surface area copper zirconia catalysts: Influence of the preparation variables, Appl. Catal., A, 2009, vol. 360, pp. 98–105.Google Scholar
  31. 31.
    Jiang, C.J., Trimm, D.L., Wainwright, M.S., and Cant, N.W., Kinetic study of steam reforming of methanol over copper-based catalysts, Appl. Catal., A, 1993, vol. 93, pp. 245–255.Google Scholar
  32. 32.
    Jiang, C.J., Trimm, D.L., Wainwright, M.S., and Cant, N.W., Kinetic mechanism for the reaction between methanol and water over a Cu–ZnO–Al2O3 catalyst, Appl. Catal., A, 1993, vol. 97, pp. 145–158.Google Scholar
  33. 33.
    Peppley, B.A., Amphlett, J.C., Kearns, L.M., and Mann, R.F., Methanol–steam reforming on Cu/ZnO/Al2O3 catalysts, Part 2. A comprehensive kinetic model, Appl. Catal., A, 1999, vol. 179, pp. 31–49.Google Scholar
  34. 34.
    Takezawa, N. and Iwasa, N., Steam reforming and dehydrogenation of methanol: difference in the catalytic functions of copper and group VIII metals, Catal. Today, 1997, vol. 36, pp. 45–56.CrossRefGoogle Scholar
  35. 35.
    Breen, J.P. and Ross, J.R.H., Methanol reforming for fuel-cell applications: development of zirconia-containing Cu–Zn–Al catalysts, Catal. Today, 1999, vol. 51, pp. 521–533.CrossRefGoogle Scholar
  36. 36.
    Shishido, T., Yamamoto, Y., Morioka, H., and Takehira, K., Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming, J. Mol. Catal. A: Chem., 2007, vol. 268, pp. 185–194.CrossRefGoogle Scholar
  37. 37.
    Zhang, R., Sun, Y., and Peng, S., In situ FTIR studies of methanol adsorption and dehydrogenation over Cu/SiO2 catalyst, Fuel, 2002, vol. 81, pp. 1619–1624.CrossRefGoogle Scholar
  38. 38.
    Frank, B., Jentoft, F.C., Soerijanto, H., Kröhnert, J., Schlögl, R., and Schomäcker, R., Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics, J. Catal., 2007, vol. 246, pp. 177–192.CrossRefGoogle Scholar
  39. 39.
    Catalysis for Alternative Energy Generation, Guczi, L. and Erdohelyi, A., Eds., New York: Springer-Verlag, 2012.Google Scholar
  40. 40.
    Yao, C.-Z., Wang L.-C., Liu Y.-M., Wu G.-S., Cao Y., Dai W.-L., He, H.-Y., and Fan, K.-N., Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts, Appl. Catal., A, 2006, vol. 297, pp. 151–158.Google Scholar
  41. 41.
    Shishido, T., Yamamoto, Y., Morioka, H., Takaki, K., and Takehira, K., Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol, Appl. Catal., A, 2004, vol. 263, pp. 249–253.Google Scholar
  42. 42.
    Liu, Q., Wang, L.-C., Chen, M., Liu, Y.-M., Cao, Y., He, H.-Y., and Fan, K.-N., Waste-free soft reactive grinding synthesis of high-surface-area copper-manganese spinel oxide catalysts highly effective for methanol steam reforming, Catal. Lett., 2008, vol. 121, pp. 144–150.CrossRefGoogle Scholar
  43. 43.
    Huang, C.Y., Sun, Y.-M., Chou, C.-Y., and Su, C.-C., Performance of catalysts CuO–ZnO–Al2O3, CuO–ZnO–Al2O3–Pt–Rh, and Pt–Rh in a small reformer for hydrogen generation, J. Power Sources, 2007, vol. 166, pp. 450–457.CrossRefGoogle Scholar
  44. 44.
    Sá, S. Hugo, S., Brandão, L., José, M.S., and Adélio, M., Catalysts for methanol steam reforming—a review, Appl. Catal., B, 2010, vol. 99, pp. 43–57.CrossRefGoogle Scholar
  45. 45.
    Jakdetchai, O., Takayama, N., and Nakajima, T., Activity enhancement of CuZn-impregnated FSM-16 by modification with 1,3-butanediol for steam reforming of methanol, Kinet. Catal., 2005, vol. 46, pp. 56–64.Google Scholar
  46. 46.
    Tarasov, B.P., Lototskii, M.V., and Yartys’, V.A., Problem of hydrogen storage and prospective uses of hydrides for hydrogen accumulation, Russ. J. Gen. Chem., 2007, vol. 77, no. 4, pp. 694–711.CrossRefGoogle Scholar
  47. 47.
    Purnama, H., Girgsdies, F., Ressler, T., Schattka, J.H., Caruso, R.A., Schomäcker, R., and Schlögl, R., Activity and selectivity of a nanostructured CuO/ZrO2 catalyst in the steam reforming of methanol, Catal. Lett., 2004, vol. 94, pp. 61–68.CrossRefGoogle Scholar
  48. 48.
    Papavasiliou, J., Avgouropoulos, G., and Ioannides, T., Production of hydrogen via combined steam reforming of methanol over CuO–CeO2 catalysts, Catal. Commun., 2004, vol. 5, pp. 231–235.CrossRefGoogle Scholar
  49. 49.
    Papavasiliou, J., Avgouropoulos, G., and Ioannides, T., Steam reforming of methanol over copper–manganese spinel oxide catalysts, Catal. Commun., 2005, vol. 6, pp. 497–501.CrossRefGoogle Scholar
  50. 50.
    Papavasiliou, J., Avgouropoulos, G., and Ioannides, T., In situ combustion synthesis of structured Cu–Ce–O and Cu–Mn–O catalysts for the production and purification of hydrogen, Appl. Catal., B, 2006, vol. 66, pp. 168–174.CrossRefGoogle Scholar
  51. 51.
    Papavasiliou, J., Avgouropoulos, G., and Ioannides, T., Effect of dopants on the performance of CuO–CeO2 catalysts in methanol steam reforming, Appl. Catal., B, 2007, vol. 69, pp. 226–234.CrossRefGoogle Scholar
  52. 52.
    Kniep, B.L., Girgsdies, F., and Ressler, T., Effect of precipitate aging on the microstructural characteristics of Cu/ZnO catalysts for methanol steam reforming, J. Catal., 2005, vol. 236, pp. 34–44.CrossRefGoogle Scholar
  53. 53.
    Wang, L.-C., Liu, Q., Chen, M., Liu, Y.-M., Cao, Y., He, H.-Y., and Fan, K.-N., Structural evolution and catalytic properties of nanostructured Cu/ZrO2 catalysts prepared by oxalate gel-coprecipitation technique, J. Phys. Chem. C, 2007, vol. 111, pp. 6549–6557.CrossRefGoogle Scholar
  54. 54.
    Stenina, I.A., Voropaeva, E.Yu., Brueva, T.R., Sinel’nikov, A.A., Drozdova, N.A., Ievlev, V.M., and Yaroslavtsev, A.B., Heat-treatment induced evolution of the morphology and microstructure of zirconia prepared from chloride solutions during, Russ. J. Inorg. Chem., 2008, vol. 53, no. 6, pp. 842–848.CrossRefGoogle Scholar
  55. 55.
    Lytkina, A.A., Zhilyaeva, N.A., Ermilova, M.M., Orekhova, N.V., and Yaroslavtsev, A.B., Influence of the support structure and composition of Ni–Cu-based catalysts on hydrogen production by methanol steam reforming, Int. J. Hydrogen Energy, 2015, vol. 40, pp. 9677–9684.CrossRefGoogle Scholar
  56. 56.
    Kurtz, M., Wilmer, H., Genger, T., Hinrichsen, O., and Muhler, M., Deactivation of supported copper catalysts for methanol synthesis, Catal. Lett., 2003, vol. 86, pp. 77–80.CrossRefGoogle Scholar
  57. 57.
    Cao, W., Chen, G., Li, S., and Yuan, Q., Methanol-steam reforming over a ZnO–Cr2O3/CeO2–ZrO2/Al2O3 catalyst, Chem. Eng. J., 2006, vol. 119, pp. 93–98.CrossRefGoogle Scholar
  58. 58.
    Jones, S.D., Neal, L.M., and Hagelin-Weaver, H.E., Steam reforming of methanol using Cu-ZnO catalysts supported on nanoparticle alumina, Appl. Catal., B, 2008, vol. 84, pp. 631–642.CrossRefGoogle Scholar
  59. 59.
    Valdés-Solís, T., Marbán, G., and Fuertes, A.B., Nanosized catalysts for the production of hydrogen by methanol steam reforming, Catal. Today, 2006, vol. 116, pp. 354–360.CrossRefGoogle Scholar
  60. 60.
    Shen, J.-P. and Song, C., Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells, Catal. Today, 2002, vol. 77, pp. 89–98.CrossRefGoogle Scholar
  61. 61.
    Ma, L., Gong, B., Tran, T., and Wainwright, M.S., Cr2O3 promoted skeletal Cu catalysts for the reactions of methanol steam reforming and water gas shift, Catal. Today, 2000, vol. 63, pp. 499–505.CrossRefGoogle Scholar
  62. 62.
    Cheng, W.-H., Chen, I., Liou, J.-S., and Lin, S.-S., Supported Cu catalysts with yttria-doped ceria for steam reforming of methanol, Top. Catal., 2003, vol. 22, pp. 225–233.CrossRefGoogle Scholar
  63. 63.
    Li, Y.-F., Dong, X.-F., and Lin, W.-M., Effects of ZrO2-promoter on catalytic performance of CuZnAlO catalysts for production of hydrogen by steam reforming of methanol, Int. J. Hydrogen Energy, 2004, vol. 29, pp. 1617–1621.CrossRefGoogle Scholar
  64. 64.
    Jeong, H., Kim, K.I., Kim, T.H., Ko, C.H., Park, H.C., and Song, I.K., Hydrogen production by steam reforming of methanol in a micro-channel reactor coated with Cu/ZnO/ZrO2/Al2O3 catalyst, J. Power Sources, 2006, vol. 159, pp. 1296–1299.CrossRefGoogle Scholar
  65. 65.
    Clancy, P., Breen, J.P., and Ross, J.R.H., The preparation and properties of co-precipitated Cu–Zr–Y and Cu–Zr–La catalysts used for the steam reforming of methanol, Catal. Today, 2007, vol. 127, pp. 291–294.CrossRefGoogle Scholar
  66. 66.
    Wu, G.-S., Mao, D.-S., Lu, G.-Z., Cao, Y., and Fan, K.-N., The role of the promoters in Cu based catalysts for methanol steam reforming, Catal. Lett., 2009, vol. 130, pp. 177–184.CrossRefGoogle Scholar
  67. 67.
    Chin, Y.H., Dagle, R., Hu, J., Dohnalkova, A.C., and Wang, Y., Steam reforming of methanol over highly active Pd/ZnO catalyst, Catal. Today, 2002, vol. 77, pp. 79–88.CrossRefGoogle Scholar
  68. 68.
    Wang, Y., Zhang, J., Xu, H., and Bai, X., Reduction of Pd/ZnO catalyst and its catalytic activity for steam reforming of methanol, Chin. J. Catal., 2007, vol. 28, pp. 234–238.CrossRefGoogle Scholar
  69. 69.
    Karim, A.M., Conant, T., and Datye, A.K., Controlling ZnO morphology for improved methanol steam reforming reactivity, Phys. Chem. Chem. Phys., 2008, vol. 10, pp. 5584–5590.CrossRefPubMedGoogle Scholar
  70. 70.
    Krumpelt, M., Krause, T., Carter, J., Kopasz, J., and Ahmed, S., Fuel processing for fuel cell systems in transportation and portable power applications, Catal. Today, 2002, vol. 77, pp. 3–16.CrossRefGoogle Scholar
  71. 71.
    Iulianelli, A., Longo, T., Liguori, S., Seelam, P.K., Keiski, R.L., and Basile, A., Oxidative steam reforming of ethanol over Ru–Al2O3 catalyst in a dense Pd–Ag membrane reactor to produce hydrogen for PEM fuel cells, Int. J. Hydrogen Energy, 2009, vol. 34, pp. 558–565.CrossRefGoogle Scholar
  72. 72.
    Soria, M.A., Mateos-Pedrero, C., Guerrero-Ruiz, A., and Rodríguez-Ramos, I., Thermodynamic and experimental study of combined dry and steam reforming of methane on Ru/ZrO2–La2O3 catalyst at low temperature, Int. J. Hydrogen Energy, 2011, vol. 36, pp. 15212–15220.CrossRefGoogle Scholar
  73. 73.
    Hung, C.C., Chen, S.L., Liao, Y.K., Chen, C.H., and Wang, J.H., Oxidative steam reforming of ethanol for hydrogen production on M/Al2O3, Int. J. Hydrogen Energy, 2012, vol. 37, pp. 4955–4966.CrossRefGoogle Scholar
  74. 74.
    Carbajal Ramos, I.A., Montini, T., Lorenzut, B., Troiani, H., Gennari, F.C., Graziani, M., and Fornasiero, P., Hydrogen production from ethanol steam reforming on M/CeO2/YSZ (M = Ru, Pd, Ag) nanocomposites, Catal. Today, 2012, vol. 180, pp. 96–104.CrossRefGoogle Scholar
  75. 75.
    Amjad, U., Vita, A., Galletti, C., Pino, L., and Specchia, S., Comparative study on steam and oxidative steam reforming of methane with noble metal catalysts, Ind. Eng. Chem. Res., 2013, vol. 52, pp. 15428–15436.CrossRefGoogle Scholar
  76. 76.
    Iwasa, N., Masuda, S., Ogawa, N., and Takezawa, N., Steam reforming of methanol over Pd/ZnO: effect of the formation of PdZn alloys upon the reaction, Appl. Catal., A, 1995, vol. 125, pp. 145–157.Google Scholar
  77. 77.
    Iwasa, N. and Takezawa, N., New supported Pd and Pt alloy catalysts for steam reforming and dehydrogenation of methanol, Top. Catal., 2003, vol. 22, pp. 215–224.CrossRefGoogle Scholar
  78. 78.
    Rodriguez, J.A., Interactions in bimetallic bonding: Electronic and chemical properties of PdZn surfaces, J. Phys. Chem., 1994, vol. 98, pp. 5758–5764.CrossRefGoogle Scholar
  79. 79.
    Penner, S., Jenewein, B., Gabasch, H., Klötzer, B., Wang, D., Knop-Gericke, A., Schlögl, R., and Hayek, K., Growth and structural stability of well-ordered PdZn alloy nanoparticles, J. Catal., 2006, vol. 241, pp. 14–19.CrossRefGoogle Scholar
  80. 80.
    Iwasa, N., Mayanagi, T., Nomura, W., Arai, M., and Takezawa, N., Effect of Zn addition to supported Pd catalysts in the steam reforming of methanol, Appl. Catal., A, 2003, vol. 248, pp. 153–160.Google Scholar
  81. 81.
    Conant, T., Karim, A.M., Lebarbier, V., Wang, Y., Girgsdies, F., Schlögl, R., and Datye, A., Stability of bimetallic Pd–Zn catalysts for the steam reforming of methanol, J. Catal., 2008, vol. 257, pp. 64–70.CrossRefGoogle Scholar
  82. 82.
    Grenoble, D.C., The chemistry and catalysis of the water/toluene reaction: 1. The specific activities and selectivities of the group VIII metals supported on Al2O3, J. Catal., 1978, vol. 51, pp. 203–211.CrossRefGoogle Scholar
  83. 83.
    Duprez, D., Miloudi, A., and Tournayan, L., New evidence for the support effects in toluene steam dealkylation on rhodium aluminochromium catalysts, Appl. Catal., A, 1985, vol. 14, pp. 333–342.Google Scholar
  84. 84.
    Duprez, D., Selective steam reforming of aromatic compounds on metal catalysts, Appl. Catal., A, 1992, vol. 82, pp. 111–157.Google Scholar
  85. 85.
    Can, F., Le Valant, A., Bion, N., Epron, F., and Duprez, D., New active and selective Rh–REOx–Al2O3 catalysts for ethanol steam reforming, J. Phys. Chem., 2008, vol. 112, pp. 14145–14153.Google Scholar
  86. 86.
    Tsai, M.Ch., Wang, J.H., Shen, Ch.Ch., and Yeh, Ch.T., Promotion of copper-zinc catalyst with rare earth for the steam reforming of methanol at low temperatures, J. Catal., 2011, vol. 279, pp. 241–245.CrossRefGoogle Scholar
  87. 87.
    Yasuyuki, M., Durable Cu composite catalyst for hydrogen production by high temperature methanol steam reforming, J. Power Sources, 2014, vol. 272, pp. 961–969.CrossRefGoogle Scholar
  88. 88.
    He, J., Yang, Z., Zhang, L., Li, Y., and Pan, L., Cu supported on ZnAl–LDHs precursor prepared by in-situ synthesis method on γ-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming, Int. J. Hydrogen Energy, 2017, vol. 42, pp. 9930–9937.CrossRefGoogle Scholar
  89. 89.
    Abrokwah, R.Y., Deshmane, V.G., and Kuila, D., Comparative performance of M-MCM-41 (M: Cu, Co, Ni, Pd, Zn and Sn) catalysts for steam reforming of methanol, J. Mol. Catal. A: Chem., 2016, vol. 425, pp. 10–20.CrossRefGoogle Scholar
  90. 90.
    Eswaramoorthi, I. and Dalai, A.K., A comparative study on the performance of mesoporous SBA-15 supported Pd–Zn catalysts in partial oxidation and steam reforming of methanol for hydrogen production, Int. J. Hydrogen Energy, 2009, vol. 34, pp. 2580–2590.CrossRefGoogle Scholar
  91. 91.
    Nomikos, G.N., Panagiotopoulou, P., Kondarides, D.I., Pinzari, F., Patrono, P., and Costantino, U., Methanol reforming reactions over Zn/TiO2 catalysts, Catal. Commun., 2006, vol. 7, pp. 696–700.CrossRefGoogle Scholar
  92. 92.
    Chiarelloa, G.L., Aguirreb, M.H., and Selli, E., Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2, J. Catal., 2010, vol. 273, pp. 182–190.CrossRefGoogle Scholar
  93. 93.
    Verykios, X.E., Kinetic and mechanistic study of the photocatalytic reforming of methanol over Pt/TiO2 catalyst, Appl. Catal., B, 2014, vol. 46, pp. 249–257.Google Scholar
  94. 94.
    Deshmane, V.G., Owen, S.L., Abrokwah, R.Y., and Kuila, D., Mesoporous nanocrystalline TiO2 supported metal (Cu, Co, Ni, Pd, Zn, and Sn) catalysts: effect of metal-support interactions on steam reforming of methanol, J. Mol. Catal. A: Chem., 2015, vol. 408, pp. 202–213.CrossRefGoogle Scholar
  95. 95.
    Liu, X., Men, Y., Wang, J., He, R., and Wang, Y., Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming, J. Power Sources, 2017, vol. 364, pp. 341–350.CrossRefGoogle Scholar
  96. 96.
    Iwasa, N., Mayanagi, T., Ogawa, N., Sakata, K., and Takezawa, N., New catalytic functions of Pd–Zn, Pd–Ga, Pd–In, Pt–Zn, Pt–Ga, and Pt–In alloys in the conversions of methanol, Catal. Lett., 1998, vol. 54, pp. 119–123.CrossRefGoogle Scholar
  97. 97.
    Papavasiliou, J., Avgouropoulos, G., and Ioannides, T., Steady-state isotopic transient kinetic analysis of steam reforming of methanol over Cu-based catalysts, Appl. Catal., B, 2009, vol. 88, pp. 490–496.CrossRefGoogle Scholar
  98. 98.
    Ranganathan, E.S., Bej, S.K., and Thompson, L.T., Methanol steam reforming over Pd/ZnO and Pd/CeO2 catalysts, Appl. Catal., A, 2005, vol. 289, pp. 153–162.Google Scholar
  99. 99.
    Agrell, J., Birgersson, H., Boutonnet, M., Melián-Cabrera, I., Navarro, R.M., and Fierro, J.L.G., Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3, J. Catal., 2003, vol. 219, pp. 389–403.CrossRefGoogle Scholar
  100. 100.
    Lindström, B. and Pettersson, L.J., Steam reforming of methanol over copper-based monoliths: the effects of zirconia doping, J. Power Sources, 2002, vol. 106, pp. 264–273.CrossRefGoogle Scholar
  101. 101.
    Huang, X., Ma, L., and Wainwright, M.S., The influence of Cr, Zn, and Co additives on the performance of skeletal copper catalysts for methanol synthesis and related reactions, Appl. Catal., A, 2004, vol. 257, pp. 235–243.Google Scholar
  102. 102.
    Liu, Y., Hayakawa, T., Tsunoda, T., Suzuki, K., Hamakawa, S., Murata, K., Shiozaki, R., Ishii, T., and Kumagai, M., Steam reforming of methanol over Cu/CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts, Top. Catal., 2003, vol. 22, pp. 205–213.CrossRefGoogle Scholar
  103. 103.
    Patel, S. and Pant, K.K., Activity and stability enhancement of copper–alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol, J. Power Sources, 2006, vol. 159, pp. 139–143.CrossRefGoogle Scholar
  104. 104.
    Zhang, X. and Shi, P., Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts, J. Mol. Catal. A: Chem., 2003, vol. 194, pp. 99–105.CrossRefGoogle Scholar
  105. 105.
    Xia, G., Holladay, J.D., Dagle, R.A., Jones, E.O., and Wang, Y., Development of highly active Pd–ZnO/Al2O3 catalysts for microscale fuel processor applications, Chem. Eng. Technol., 2005, vol. 28, pp. 515–519.CrossRefGoogle Scholar
  106. 106.
    Xiong, G., Luo, L., Li, C., and Yang, X., Synthesis of mesoporous ZnO (m-ZnO) and catalytic performance of the Pd/m–ZnO catalyst for methanol steam reforming, Energy Fuels, 2009, vol. 23, pp. 1342–1346.CrossRefGoogle Scholar
  107. 107.
    Cheng, W.-H., Chen, I., Liou, J.-S., and Lin, S.-S., Supported Cu catalysts with yttria-doped ceria for steam reforming of methanol, Top. Catal., 2003, vol. 22, pp. 225–233.CrossRefGoogle Scholar
  108. 108.
    Houteit, A., Mahzoul, H., Ehrburger, P., Bernhardt, P., Légaré, P., and Garin, F., Production of hydrogen by steam reforming of methanol over copper-based catalysts: The effect of cesium doping, Appl. Catal., A, 2006, vol. 306, pp. 22–28.Google Scholar
  109. 109.
    Clancy, P., Breen, J.P., and Ross, J.R.H., The preparation and properties of coprecipitated Cu–Zr–Y and Cu–Zr–La catalysts used for the steam reforming of methanol, Catal. Today, 2007, vol. 127, pp. 291–294.CrossRefGoogle Scholar
  110. 110.
    Pereira, E.B., Homs, N., Marti, S., Fierro, J.L.G., and Ramrez de La Piscina, P., Oxidative steam-reforming of ethanol over Co/SiO2, Co–Rh/SiO2 and Co–Ru/SiO2 catalysts: Catalytic behavior and deactivation/regeneration processes, J. Catal., 2008, vol. 257, pp. 206–214.CrossRefGoogle Scholar
  111. 111.
    Cai, W., Wang, F., Zhan, E., van Veen, A.C., Mirodatos, C., and Shen, W., Hydrogen production from ethanol over Ir/CeO2 catalysts: A comparative study of steam reforming, partial oxidation and oxidative steam reforming, J. Catal., 2008, vol. 257, pp. 96–107.Google Scholar
  112. 112.
    Zhou, G., Barrio, L., Agnoli, S., Senanayake, S.D., Evans, J., Kubacka, A., Estrella, M., Hanson, J.C., Martinez-Arias, A., Fernandez-Garcia, M., and Rodriguez, J.A., High activity of Ce1 – xNixO2 – y for H2 production through ethanol steam reforming: tuning catalytic performance through metal–oxide interactions, Angew. Chem., 2010, vol. 122, pp. 9874–9878.Google Scholar
  113. 113.
    Sato, K., Kawano, K., Ito, A., Takita, Y., and Nagaoka, K., Hydrogen production from bioethanol: Oxidative steam reforming of aqueous ethanol triggered by oxidation of Ni/Ce0.5Zr0.5O2 – x at low temperature, Chem. Sustainable Chem., 2010, vol. 3, pp. 1364–1366.CrossRefGoogle Scholar
  114. 114.
    Yang, L., Lin, G.-D., and Zhang, H.-B., Highly efficient Pd–ZnO catalyst doubly promoted by CNTs and Sc2O3 for methanol steam reforming, Appl. Catal., A, 2013, vol. 455, pp. 137–144.Google Scholar
  115. 115.
    Lazaro, M.J., Ascaso, S., Perez-Rodrıguez, S., Calderon, J.C., Galvez, M.E., Nieto, M.J., Moliner, R., Boyano, A., Sebastian, D., Alegre, C., Calvillo, L., and Celorrio, V., Carbon-based catalysts: synthesis and applications, C. R. Chim., 2015, vol. 18, pp. 1229–1241.CrossRefGoogle Scholar
  116. 116.
    Vershinin, N.N., Efimov, O.N., Bakaev, V.A., Aleksenskii, A.E., Baidakova, M.V., Sitnikova, A.A., and Vul’, A.Ya., Detonation nanodiamonds as catalyst supports, Fullerenes, Nanotubes, Carbon Nanostruct., 2011, vol. 19, pp. 63–68.CrossRefGoogle Scholar
  117. 117.
    Sun, X., Wang, R., and Su, D., Research progress in metal-free carbon-based catalysts, Chin. J. Catal., 2013, vol. 34, pp. 508–523.CrossRefGoogle Scholar
  118. 118.
    Krut’ko, V.K., Kulak, A.I., and Musskaya, O.N., Thermal transformations of composites based on hydroxyapatite and zirconia, Inorg. Mater., 2017, vol. 53, no. 4, pp. 429–436.CrossRefGoogle Scholar
  119. 119.
    Mironova, E.Yu., Lytkina, A.A., Ermilova, M.M., Efimov, M.N., Zemtsov, L.M., Orekhova, N.V., Karpacheva, G.P., Bondarenko, G.N., Muraviev, D.N., and Yaroslavtsev, A.B., Ethanol and methanol steam reforming on transition metal catalysts supported on detonation synthesis nanodiamonds for hydrogen production, Int. J. Hydrogen Energy, 2015, vol. 40, pp. 3557–3565.CrossRefGoogle Scholar
  120. 120.
    Bondarenko, G.N., Ermilova, M.M., Efimov, M.N., Zemtsov, L.M., Karpacheva, G.P., Mironova, E.Yu., Orekhova, N.V., Rodionov, A.S., and Yaroslavtsev, A.B., In situ IR spectroscopy study of ethanol steam reforming in the presence of Pt–Ru/DND nanocatalysts, Nanotechnol. Russ., 2017, vol. 12, nos. 5–6, pp. 315–325.CrossRefGoogle Scholar
  121. 121.
    Duprez, D., Peireira, P., Miloudi, A., and Maurel, R., Steam dealkylation of aromatic hydrocarbons: II. Role of the support and kinetic pathway of oxygenated species in toluene steam dealkylation over group VIII metal catalysts, J. Catal., 1982, vol. 75, pp. 151–163.CrossRefGoogle Scholar
  122. 122.
    Muraki, H. and Fujitani, Y., Steam reforming of n-heptane using a Rh/MgAl: I. Support and kinetics of MgAl2O4 catalyst, Appl. Catal., 1989, vol. 47, pp. 75–84.CrossRefGoogle Scholar
  123. 123.
    Hogarth, M.P. and Hards, G.A., Direct methanol fuel cells: technological advances and further requirements, Platinum Met. Rev., 1996, vol. 40, no. 4, pp. 150–159.Google Scholar
  124. 124.
    Lukashev, R.V., Tarasov, B.P., and Klyamkin, S.N., Preparation and properties of hydrogen-storage composites in the MgH2–C system, Inorg. Mater., 2006, vol. 42, no. 7, pp. 726–732.CrossRefGoogle Scholar
  125. 125.
    Denys, R.V., Poletaev, A.A., Yartys, V.A., Solberg, J.K., and Tarasov, B.P., LaMg11 with a giant unit cell synthesized by hydrogen metallurgy: crystal structure and hydrogenation behavior, Acta Mater., 2010, vol. 58, pp. 2510–2519.CrossRefGoogle Scholar
  126. 126.
    Lamy, C., Belgsir, E.M., and Leger, J.-M., Electrocatalytic oxidation of aliphatic alcohols: application to the direct alcohol fuel cell (DAFC), J. Appl. Electrochem., 2001, vol. 31, pp. 799–809.CrossRefGoogle Scholar
  127. 127.
    Willsau, J. and Heitbaum, J., Elementary steps of ethanol oxidation on Pt in sulfuric acid as evidenced by isotope labeling, J. Electroanal. Chem., 1985, vol. 194, pp. 27–35.CrossRefGoogle Scholar
  128. 128.
    Verma, A. and Basu, S., Direct use of alcohols and sodium borohydride as fuel in an alkaline fuel cell, J. Power Sources, 2005, vol. 145, pp. 282–285.CrossRefGoogle Scholar
  129. 129.
    Gojković, S.Lj., Vidaković, T.R., and Durović, D.R., Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalyst, Electrochim. Acta, 2003, vol. 48, pp. 3607–3614.CrossRefGoogle Scholar
  130. 130.
    Sheikh, A.M., Ebn-Alwaled Abd-Alftah, K., and Malfatti, C.F., On reviewing the catalyst materials for direct alcohol fuel cells (DAFCs), J. Multidiscip. Eng. Sci. Technol., 2014, vol. 1, no. 3. ISSN 3159-0040Google Scholar
  131. 131.
    Zhu, L., Zhao, T., Xu, J., and Liang, Z., Preparation and characterization of carbon supported submonolayer palladium decorated gold nanoparticles for the electro-oxidation of ethanol in alkaline media, J. Power Sources, 2009, vol. 187, pp. 80–84.CrossRefGoogle Scholar
  132. 132.
    Cui, G., Song, S., Shen, P., Kowal, A., and Bianchini, C., First-principles considerations on catalytic activity of Pd toward ethanol oxidation, J. Phys. Chem. C, 2009, vol. 113, pp. 15639–15642.CrossRefGoogle Scholar
  133. 133.
    Antolini, E., Salgado, J.R.C., and Gonzalez, E.R., The methanol oxidation reaction on platinum alloys with the first row transition metals: the case of Pt–Co and –Ni alloy electrocatalysts for DMFCs: a short review, Appl. Catal., B, 2006, vol. 63, pp. 137–149.CrossRefGoogle Scholar
  134. 134.
    Lamy, C., Lima, A., Le Rhun, V., Delime, F., Coutanceau, C., and Liger, J.M., Recent advances in the development of direct alcohol fuel cells (DAFC), J. Power Sources, 2002, vol. 108, pp. 283–296.CrossRefGoogle Scholar
  135. 135.
    Antoniassi, R.M., Otubo, L., Vaz, J.M., Oliveira Neto, A., and Spinacé, E.V., Synthesis of Pt nanoparticles with preferential (1 0 0) orientation directly on the carbon support for direct ethanol fuel cell, J. Catal., 2016, vol. 342, pp. 67–74.CrossRefGoogle Scholar
  136. 136.
    Petrii, O.A., Pt–Ru electrocatalysts for fuel cells: a representative review, J. Solid State Electrochem., 2008, vol. 12, pp. 609–642.CrossRefGoogle Scholar
  137. 137.
    Tripkovic, A.V., Strbac, S., and Popovic, K.Dj., Effect of temperature on the methanol oxidation at supported Pt and PtRu catalysts in alkaline solution, Electrochem. Commun., 2003, vol. 5, pp. 484–490.CrossRefGoogle Scholar
  138. 138.
    Kadirgan, F., Beden, B., Leger, J.M., and Lamy, C., Synergistic effect in the electrocatalytic oxidation of methanol on platinum + palladium alloy electrodes, J. Electroanal. Chem., 1981, vol. 125, pp. 89–103.CrossRefGoogle Scholar
  139. 139.
    Antolini, E., Salgado, J.R.C., and Gonzalez, E.R., Carbon supported Pt75M25 (M = Co, Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells, J. Electroanal. Chem., 2005, vol. 580, pp. 145–154.CrossRefGoogle Scholar
  140. 140.
    Zhang, J., Vukmirovic, M., Xu, Y., Mavrikakis, M., and Adzic, R., Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates, Angew. Chem. Int. Ed., 2005, vol. 44, pp. 2132–2135.CrossRefGoogle Scholar
  141. 141.
    Antolini, E., Carbon supports for low-temperature fuel cell catalysts, Appl. Catal., B, 2009, vol. 88, pp. 1–24.CrossRefGoogle Scholar
  142. 142.
    Kuver, A. and Vielstich, W., Investigation of methanol crossover and single electrode performance during PEMDMFC operation: a study using a solid polymer electrolyte membrane fuel cell system, J. Power Sources, 1998, vol. 74, pp. 211–218.CrossRefGoogle Scholar
  143. 143.
    Lu, G.Q. and Wang, C.Y., Electrochemical and flow characterization of a direct methanol fuel cell, J. Power Sources, 2004, vol. 134, pp. 33–40.CrossRefGoogle Scholar
  144. 144.
    Pourcelly, G., Nikonenko, V.V., Pismenskaya, N.D., and Yaroslavtsev, A.B., Applications of Charged Membranes in Separation, Fuel Cells and Emerging Processes, Chap. 20: Ionic Interactions in Natural and Synthetic Macromolecules, Ciferri, A. and Perico, A., Eds., New York: Wiley, 2012, pp. 761–816.Google Scholar
  145. 145.
    Park, I.-S., Park, K.-W., Choi, J.-H., Park, C.R., and Sung, Y.-E., Electrocatalytic enhancement of methanol oxidation by graphite nanofibers with a high loading of PtRu alloy nanoparticles, Carbon, 2007, vol. 45, pp. 28–33.CrossRefGoogle Scholar
  146. 146.
    Souza, J., Queiroz, S., Bergamaski, K., Gonzalez, E., and Nart, F., A study using DEMS and in-situ FTIR techniques, Phys. Chem. B, 2002, vol. 106, pp. 9825–9830.CrossRefGoogle Scholar
  147. 147.
    Arenz, M., Stamenkovic, V., Blizanac, B.B., Mayrhofer, K.J., and Markovic, N.M., Carbon-supported Pt–Sn electrocatalysts for the anodic oxidation of H2, CO, and H2/CO mixtures. Part II: The structure–activity relationship, J. Catal., 2005, vol. 232, pp. 402–415.CrossRefGoogle Scholar
  148. 148.
    Camara, G.A., de Lima, R.B., and Iwasita, T., Catalysis of ethanol electrooxidation by PtRu: The influence of catalyst composition, Electrochem. Commun., 2004, vol. 6, pp. 812–815.CrossRefGoogle Scholar
  149. 149.
    Freitas, R.F., Batista, E.C., Castro, M.P., Oliveira, R.T.S., Santos, M.C., and Pereira, E.C., Ethanol electrooxidation on Bi submonolayers deposited on a Pt electrode, Electrocatalysis, 2011, vol. 2, pp. 224–230.CrossRefGoogle Scholar
  150. 150.
    Zhou, W., Li, W., Song, S., Zhou, Z., Jiang, L., Sun, G., Xin, Q., Poulianitis, K., Kontou, S., and Tsiakaras, P., Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells, J. Power Sources, 2004, vol. 131, pp. 214–223.CrossRefGoogle Scholar
  151. 151.
    Fujiwara, N., Friedrich, K.A., and Stimming, U., Ethanol oxidation on PtRu electrodes studied by differential electrochemical mass spectrometry, J. Electroanal. Chem., 1999, vol. 472, pp. 120–125.CrossRefGoogle Scholar
  152. 152.
    Verma, L.K., Studies on methanol fuel cell, J. Power Sources, 2000, vol. 86, pp. 464–468.CrossRefGoogle Scholar
  153. 153.
    Zhou, W., Zhou, Z., Song, S., Li, W., Sun, G., Tsiakaras, P., and Xin, Q., Pt based anode catalysts for direct ethanol fuel cells, Appl. Catal., B, 2003, vol. 46, pp. 273–285.CrossRefGoogle Scholar
  154. 154.
    Lamy, C., Rousseau, S., Belgsir, E.M., Coutanceau, C., and Leger, J.-M., Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts, Electrochim. Acta, 2004, vol. 49, pp. 3901–3908.CrossRefGoogle Scholar
  155. 155.
    De Souza, E.A., Giz, M.J., Camara, G.A., Antolini, E., and Passos, R.R., Ethanol electro-oxidation on partially alloyed Pt–Sn–Rh/C catalysts, Electrochim. Acta, 2014, vol. 147, pp. 483–489.CrossRefGoogle Scholar
  156. 156.
    Antolini, A., Pt–Ni and Pt–M–Ni (M = Ru, Sn) anode catalysts for low-temperature acidic direct alcohol fuel cells: a review, Energies, 2017, vol. 10, pp. 42–61.CrossRefGoogle Scholar
  157. 157.
    Papageorgopoulos, D.C., Keijzer, M., and de Bruijn, F.A., The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported electrocatalysts in the quest for improved CO tolerant PEMFC anodes, Electrochim. Acta, 2002, vol. 48, pp. 197–204.CrossRefGoogle Scholar
  158. 158.
    Erini, N., Lopukrakpam, R., Petkov, V., Baranova, E., Yang, R., Teschner, D., Huang, Y., Brankovic, S.R., and Strasser, P., Ethanol electro-oxidation on ternary platinum–rhodium–tin nanocatalysts: Insights in the atomic 3D structure of the active catalytic phase, ACS Catal., 2014, vol. 4, pp. 1859–1867.CrossRefGoogle Scholar
  159. 159.
    Kepeniene, V., Tamasaukaite-Tamasiunaite, L., Jablonskiene, J., Vaiciuniene, J., Kondrotas, R., Juskenas, R., and Norkus, E., Investigation of graphene supported platinum-cobalt nanocomposites as electrocatalysts for ethanol oxidation, J. Electrochem. Soc., 2014, vol. 161, pp. F1354–F1359.CrossRefGoogle Scholar
  160. 160.
    Zhou, W., Li, M., Zhang, L., and Chan, S.H., Supported PtAu catalysts with different nano-structures for ethanol electrooxidation, Electrochim. Acta, 2014, vol. 123, pp. 233–239.CrossRefGoogle Scholar
  161. 161.
    Liu, H., Li, J., Wang, L., Tang, Y., Yu, X.B., and Chen, Y., Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation, Nano Res., 2017, vol. 10, pp. 3324–3332.CrossRefGoogle Scholar
  162. 162.
    Monyoncho, E.A., Ntais, S., Brazeau, N., Wu, J., Sun, C., and Baranova, E., Role of the metal-oxide support in the catalytic activity of Pd nanoparticles for ethanol electrooxidation in alkaline media, Chem. Electrochem., 2016, vol. 3, pp. 218–227.Google Scholar
  163. 163.
    Schmies, H., Bergmann, A., Drnec, J., Wang, G., Teschner, D., and Kühl, S., Unraveling degradation pathways of oxide-supported Pt fuel cell nanocatalysts under in situ operating conditions, Adv. Energy Mater., 2018, vol. 8, art. ID 1701663.CrossRefGoogle Scholar
  164. 164.
    Suffredini, H., Tricoli, V., Vatistas, N., and Avaca, L., Electro-oxidation of methanol and ethanol using a Pt–RuO2/C composite prepared by the sol–gel technique and supported on boron-doped diamond, J. Power Sources, 2006, vol. 158, pp. 24–128.CrossRefGoogle Scholar
  165. 165.
    Yaroslavtsev, A.B., Dobrovolsky, Yu.A., Shaglaeva, N.S., Frolova, L.A., Gerasimova, E.V., and Sanginov, E.A., Nanostructured materials for low-temperature fuel cells, Russ. Chem. Rev., 2012, vol. 81, no. 3, pp. 191–220.CrossRefGoogle Scholar
  166. 166.
    Watanabe, M., Uchida, M., and Motoo, S., Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol, J. Electroanal. Chem., 1987, vol. 229, pp. 395–406.CrossRefGoogle Scholar
  167. 167.
    Formo, E., Peng, Z., Lee, E., Lu, X., Yang, H., and Xia, Y., Direct oxidation of methanol on Pt nanostructures supported on electrospun nanofibers of anatase, J. Phys. Chem. C, 2008, vol. 112, pp. 9970–9975.CrossRefGoogle Scholar
  168. 168.
    Guoa, X., Guo, D.J., Qiua, X.-P., Chena, L.-Q., and Zhu, W.-T., Excellent dispersion and electrocatalytic properties of Pt nanoparticles supported on novel porous anatase TiO2 nanorods, J. Power Sources, 2009, vol. 194, pp. 281–285.CrossRefGoogle Scholar
  169. 169.
    Xing, L., Jia, J., Wang, Y., Zhang, B., and Dong, S., Pt modified TiO2 nanotubes electrode: preparation and electrocatalytic application for methanol oxidation, Int. J. Hydrogen Energy, 2010, vol. 35, pp. 12169–12173.CrossRefGoogle Scholar
  170. 170.
    Song, Y.-Y., Gao, Z.-D., and Schmuki, P., Highly uniform Pt nanoparticle decoration on TiO2 nanotube arrays: a refreshable platform for methanol electrooxidation, Electrochem. Commun., 2011, vol. 13, pp. 290–293.CrossRefGoogle Scholar
  171. 171.
    He, X. and Hu, C., Building three-dimensional Pt catalysts on TiO2 nanorod arrays for effective ethanol electrooxidation, J. Power Sources, 2011, vol. 196, pp. 3119–3123.CrossRefGoogle Scholar
  172. 172.
    Gojković, S.Lj., Babić, B.M., Radmilović, V.R., and Krstajić, N.V., Nb-doped TiO2 as a support of Pt and Pt–Ru anode catalyst for PEMFCs, J. Electrochem., 2010, vol. 639, pp. 161–166.Google Scholar
  173. 173.
    Kim, D.-S., Essam, F., Abo, Z., and Kim, Y.-T., Additive treatment effect of TiO2 as supports for Pt-based electrocatalysts on oxygen reduction reaction activity, Electrochim. Acta, 2010, vol. 55, pp. 3628–3633.CrossRefGoogle Scholar
  174. 174.
    Liu, X., Chena, J., Liu, G., Zhang, L., Zhang, H., and Yi, B., Enhanced long-term durability of proton exchange membrane fuel cell cathode by employing Pt/TiO2/C catalysts, J. Power Sources, 2010, vol. 195, pp. 4098–4103.CrossRefGoogle Scholar
  175. 175.
    Kulesza, P.J., Miecznikowski, K., Baranowska, B., Skunik, M., Fiechter, S., Bogdanoff, P., and Dorbandt, I., Tungsten oxide as active matrix for dispersed carbon-supported RuSex nanoparticles: enhancement of the electrocatalytic oxygen reduction, Electrochem. Commun., 2006, vol. 8, pp. 904–908.CrossRefGoogle Scholar
  176. 176.
    Park, K.-W. and Seol, K.-S., Nb–TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells, Electrochem. Commun., 2007, vol. 9, pp. 2256–2260.CrossRefGoogle Scholar
  177. 177.
    Kim, M.J., Kwon, C.R., Eom, K.S., Kim, J.H., and Cho, E.A., Electrospun Nb-doped TiO2 nanofiber support for Pt nanoparticles with high electrocatalytic activity and durability, Sci. Rep., 2017, vol. 7, art. ID 44411.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Macak, J.M., Barczuk, P.J., Tsuchiya, H., Bauer, S., and Virtan, S., Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: enhancement of the electrocatalytic oxidation of methanol, Electrochem. Commun., 2005, vol. 7, pp. 1417–1422.CrossRefGoogle Scholar
  179. 179.
    Ioroi, T., Siroma, Z., Fujiwara, N., Yamazaki, S., and Yasuda, K., Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells, Electrochem. Commun., 2005, vol. 7, pp. 183–188.CrossRefGoogle Scholar
  180. 180.
    Higuchi, E., Miyata, K., Takase, T., and Inoue, H., Ethanol oxidation reaction activity of highly dispersed Pt/SnO2 double nanoparticles on carbon black, J. Power Sources, 2011, vol. 96, pp. 1730–1737.CrossRefGoogle Scholar
  181. 181.
    Antoniassi, R.M., Oliveira Neto, A., Linardi, M., and Spinace, E.V., The effect of acetaldehyde and acetic acid on the direct ethanol fuel cell performance using PtSnO2/C electrocatalysts, Int. J. Hydrogen Energy, 2013, vol. 38, pp. 12069–12077.CrossRefGoogle Scholar
  182. 182.
    Higuchi, E., Takase T., Chiku, M., and Inoue, H., Preparation of ternary Pt/Rh/SnO2 anode catalysts for use in direct ethanol fuel cells and their electrocatalytic activity for ethanol oxidation reaction, J. Power Sources, 2014, vol. 263, pp. 280–287.CrossRefGoogle Scholar
  183. 183.
    Mai, P., Haze, A., Chiku, M., Higuchi, E., and Inoue, H., Ethanol oxidation reaction on tandem Pt/Rh/SnOx catalyst, Catalysts, 2017, vol. 7, p. 246.CrossRefGoogle Scholar
  184. 184.
    Meenakshi, S., Sridhar, P., and Pitchumani, S., Carbon supported Pt–Sn/SnO2 anode catalyst for direct ethanol fuel cells, RSC Adv., 2014, vol. 4, pp. 86–44393.CrossRefGoogle Scholar
  185. 185.
    Chhina, H., Campbell, S., and Kesler, O., An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells, J. Power Sources, 2006, vol. 161, pp. 893–900.CrossRefGoogle Scholar
  186. 186.
    Martína, A.J., Chaparroa, A.M., and Daza, L., Single cell study of electrodeposited cathodic electrodes based on Pt–WO3 for polymer electrolyte fuel cells, J. Power Sources, 2011, vol. 196, pp. 4187–4192.CrossRefGoogle Scholar
  187. 187.
    Gua, D.-M., Chu, Y.-Y., Wang, Z.-B., Jiang, Z.-Z., Yinb, G.-P., and Liu, Y., Methanol oxidation on Pt/CeO2–C electrocatalyst prepared by microwave assisted ethyleneglycol process, Appl. Catal., B, 2011, vol. 102, pp. 9–18.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. A. Lytkina
    • 1
  • N. V. Orekhova
    • 1
  • A. B. Yaroslavtsev
    • 1
    • 2
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations