Advertisement

Inorganic Materials

, Volume 54, Issue 12, pp 1250–1255 | Cite as

Raman Scattering in Nanocomposites Based on Synthetic Opal and Nanocrystalline Bi2TeO5

  • V. N. Moiseyenko
  • N. P. Brynza
  • B. Abu Sal
  • R. Holze
  • V. S. GorelikEmail author
  • P. P. Sverbil’
Article
  • 16 Downloads

Abstract

This paper presents a systematic Raman scattering study of novel nanostructured materials based on synthetic opal and Bi2TeO5 nanocrystals, which offer high photorefractive sensitivity. Bismuth tellurite was introduced into opal pores in a molten state. The crystal structure of the material in the opal pores was determined by Raman spectroscopy. Comparison of the measured Raman spectra of the opal–Bi2TeO5 nanocomposite and those of polycrystalline powders and single crystals made it possible to reveal a number of new bands and analyze their origin. The observed variation in the intensity of Raman bands from point to point on the sample surface can be interpreted as due to structural light focusing and excitation field localization at surface and volume defects of the photonic crystal structure of the material.

Keywords:

nanocomposite bismuth tellurite structure Raman scattering opal sphere photonic crystal 

Notes

ACKNOWLEDGMENTS

This work was supported in part by the Russian Foundation for Basic Research, grant no. 18-02-00181-a.

REFERENCES

  1. 1.
    Masalov, V.M., Sukhinina, N.S., and Emel’chenko, G.A., Nanostructure of silica particles prepared by the Stöber–Fink–Bohn multistep method, Khim., Fiz. Tekhnol. Poverkhn., 2011, vol. 2, no. 4, pp. 373–384.Google Scholar
  2. 2.
    Aliev, A.E., Akhmedzhanova, N.Kh., Krivorotov, V.F., Kholmanov, I.N., and Fridman, A.A., Thermal conductivity of opal filled with a LiIO3 ionic conductor, Phys. Solid State, 2003, vol. 45, no. 1, pp. 61–68.CrossRefGoogle Scholar
  3. 3.
    Masalov, V.M. et al., Mechanism of formation and nanostructure of Stöber silica particles, Nanotechnology, 2011, vol. 22, no. 27, paper 275 718.Google Scholar
  4. 4.
    Kurdyukov, D.A. et al., Photonic crystals and glasses from monodisperse spherical mesoporous silica particles filled with nickel, Phys. Solid State, 2014, vol. 56, no. 5, pp. 1033–1038.CrossRefGoogle Scholar
  5. 5.
    Földvári, I., Denz, C., Péter, Á., Petter, J., and Visinka, F., Bismuth tellurite—a new material for holographic memory, Opt. Commun., 2000, vol. 177, pp. 105–109.CrossRefGoogle Scholar
  6. 6.
    Mercurio, D., El Farissi, M., Frit, B., and Goursat, P., Etude structurale et densification d’un nouveau matériau piézoélectrique Bi2TeO5, Mater. Chem. Phys., 1983, vol. 9, pp. 467–476.CrossRefGoogle Scholar
  7. 7.
    Stefanovich, S.Yu., Zhurov, V.A., Ivanov, S.A., Sadovskaya, L.A., Domoratsky, K.V., and Dolgikh, V.A., Bi2TeO5 polar phase high temperature transformation, Ferroelectrics, 2000, vol. 241, nos. 1–4, pp. 303–308.CrossRefGoogle Scholar
  8. 8.
    Ok, K.M., Bhuvanesh, N.S.P., and Halasyamani, P.S., Bi2TeO5: synthesis, structure, and powder second harmonic generation properties, Inorg. Chem., 2001, vol. 40, pp. 1978–1980.CrossRefGoogle Scholar
  9. 9.
    Dityatyev, O.A., Smidt, P., Stefanovich, S.Yu., Lightfoot, P., Dolgikh, V.A., and Opperman, H., Phase equilibria in the Bi2TeO5– Bi2SeO5 system and a high temperature neutron powder diffraction study of Bi2SeO5, Solid State Sci., 2004, vol. 6, no. 9, pp. 915–922.CrossRefGoogle Scholar
  10. 10.
    Anhua Wu, Jiayue Xu, Guoxing Qian, Baoliang Lu, Zengwei Ge, Linyao Tang, and Xianjun Wu, Bridgman growth of bismuth tellurite crystals, Bull. Mater. Sci., 2005, vol. 28, no. 6, pp. 561–564.CrossRefGoogle Scholar
  11. 11.
    Stöber, W., Fink, A., and Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 1968, vol. 26, pp. 62–69.CrossRefGoogle Scholar
  12. 12.
    Domoratskii, K.V., Pastukhov, V.I., Kudzin, A.Yu., Sadovskaya, L.Ya., Rizak, V.M., and Stefanovich, V.A., Raman scattering in the Bi2TeO5 single crystal, Phys. Solid State, 2000, vol. 42, no. 8, pp. 1443–1446.CrossRefGoogle Scholar
  13. 13.
    Zaytsev, K.I., Katyba, G.M., Yakovlev, E.V., Gorelik, V.S., and Yurchenko, S.O., Band-gap nonlinear optical generation: the structure of internal optical field and the structural light focusing, J. Appl. Phys., 2014, vol. 115, paper 213 505.Google Scholar
  14. 14.
    Venugopalan, S. and Ramdas, A.K., Raman spectra of bismuth germanium oxide and bismuth oxide, Phys. Rev. B: Solid State, 1972, vol. 5, no. 10, pp. 4065–4079.CrossRefGoogle Scholar
  15. 15.
    Hardcastle, F.D. and Wachs, I.E., The molecular structure of bismuth oxide by Raman spectroscopy, J. Solid State Chem., 1992, vol. 97, pp. 319–331.CrossRefGoogle Scholar
  16. 16.
    Ahmed, M.A.K., Fjellvag, H., and Kjekshus, A., Synthesis, structure, and thermal stability of tellurium oxides and oxide sulfate formed from reactions in refluxing sulfuric acid, J. Chem. Soc., Dalton Trans., 2000, pp. 4542–4549.Google Scholar
  17. 17.
    Champarnaud-Mesjard, J.C., Blanchandin, S., Thomas, P., Mirgorodsky, A., Merle-Mejean, T., and Frit, B., Crystal structure, Raman spectrum and lattice dynamics of a new metastable form of tellurium dioxide: γ-TeO2, J. Phys. Chem. Solids, 2000, vol. 61, pp. 1499–1507.CrossRefGoogle Scholar
  18. 18.
    Abu Sal, B., Moiseyenko, V., Dergachov, M., Yevchik, A., and Dovbeshko, G., Manifestation of metastable γ‑TeO2 phase in the Raman spectrum of crystals grown in synthetic opal pores, Ukr. J. Phys. Opt., 2013, vol. 14, no. 3, pp. 119–124.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. N. Moiseyenko
    • 1
  • N. P. Brynza
    • 1
  • B. Abu Sal
    • 2
  • R. Holze
    • 3
  • V. S. Gorelik
    • 4
    • 5
    Email author
  • P. P. Sverbil’
    • 5
  1. 1.Oles Honchar National UniversityDniproUkraine
  2. 2.Applied Physics Department, Faculty of Science, Tafila Technical UniversityTafilaJordan
  3. 3.Chemnitz Technical University, Institute of ChemistryD-09111 ChemnitzGermany
  4. 4.Bauman Moscow State Technical UniversityMoscowRussia
  5. 5.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations