Inorganic Materials

, Volume 54, Issue 12, pp 1187–1192 | Cite as

Effect of Particle Size on the Magnetostructural Transformation of a Manganese Monoarsenide-Based Phase in the ZnGeAs2–MnAs System

  • S. F. MarenkinEmail author
  • A. N. Aronov
  • I. V. Fedorchenko
  • A. L. Zheludkevich
  • A. V. Khoroshilov
  • V. V. Kozlov


We have studied the caloric and magnetic properties of alloys in the MnAs–ZnGeAs2 eutectic system. The results demonstrate that the heat effect and temperature range of the ferromagnetic-to-paramagnetic phase transformation depend on the crystallite size of manganese arsenide. Reducing the crystallite size to ≤60 nm causes the heat effect of the transformation to disappear, significantly changes the temperature range of the magnetic transition, and raises the Curie temperature of the alloy to 351 K.


dispersion nanocomposite ferromagnet semiconductor 



This work was supported by the Russian Foundation for Basic Research (grant no. 17-53-04055) and in part by the Presidium of the Russian Academy of Sciences (program no. 1.35: Scientific Principles behind Advanced Functional Materials).


  1. 1.
    Tananaev, I.V., Fizikokhimiya ul’tradispersnykh sistem (Physical Chemistry of Ultradisperse Systems), Moscow: Nauka, 1987.Google Scholar
  2. 2.
    Kuznetsov, N.T., Chudinova, N.N., and Rozanov, I.A., Analysis and synthesis, harmony and counterpoint: on the centenary of the birth of academician I.V. Tananaev, Herald. Russ. Acad. Sci., 2004, vol. 74, no. 3, pp. 334–340.Google Scholar
  3. 3.
    Buslaev, Yu.A., Zhukova, L.M., and Semenova, S.V., Ivan Vladimirovich Tananaev (Ivan Vladimirovich Tananaev), Moscow: Nauka, 1979.Google Scholar
  4. 4.
    Poole, C.P., Jr. and Owens, F.J., Introduction to Nanotechnology, New York: Wiley, 2003.Google Scholar
  5. 5.
    Yaroslavtsev, A.B., Khimiya tverdogo tela (Solid-State Chemistry), Moscow: Nauchnyi Mir, 2009.Google Scholar
  6. 6.
    Nanotechnology Research Directions: Vision for Nanotechnology in the Next Decade, Roko, M.C., Williams, R.S., and Alivisatos, P., Eds., Boston: Kluwer, 2000.Google Scholar
  7. 7.
    Komnik, Yu.F., Fizika metallicheskikh plenok. Razmernye i strukturnye effekty (Physics of Metallic Films: Structural and Size Effects), Moscow: Atomizdat, 1979.Google Scholar
  8. 8.
    Brandon, D.D. and Kaplan, W.D., Microstructural Characterization of Materials, London: Wiley, 1999.Google Scholar
  9. 9.
    Padalko, A.G., Praktika goryachego izostaticheskogo pressovaniya neorganicheskikh materialov pressovaniya (Practical Issues in Hot Isostatic Pressing of Inorganic Materials), Moscow: Akademkniga, 2007.Google Scholar
  10. 10.
    Aronov, A.N., Marenkin, S.F., Fedorchenko, I.V., Vasil’ev, P.N., and Boeva, N.M., Phase equilibria in the ZnGeAs2–MnAs system, Russ. J. Inorg. Chem., 2016, vol. 61, no. 1, pp. 103–108. doi 10.1134/S0036023616010058CrossRefGoogle Scholar
  11. 11.
    Yarzhemsky, V.G., Murashov, S.V., and Izotov, A.D., Calculation of the exchange interaction in the Ga1 – xMnxAs magnetic semiconductor by the Hartree–Fock and DFT methods, Dokl. Phys., 2015, vol. 60, no. 11, pp. 491–494.CrossRefGoogle Scholar
  12. 12.
    Yarzhemsky, V.G., Murashov, S.V., and Izotov, A.D., Electronic structure and exchange interaction in Ga1 – xMnxAs and In1 – xMnxAs magnetic semiconductors, Inorg. Mater., 2016, vol. 52, no. 2, pp. 89–93.CrossRefGoogle Scholar
  13. 13.
    Yarzhemsky, V.G., Murashov, S.V., and Izotov, A.D., Calculation of the electronic structure and exchange interaction in the InSb and GaAs semiconductors codoped with Mn and Ni, Inorg. Mater., 2017, vol. 53, no. 11, pp. 1131–1135.CrossRefGoogle Scholar
  14. 14.
    Marenkin, S.F., Izotov, A.D., Fedorchenko, I.V., and Novotortsev, V.M., Manufacture of magnetic granular structures in semiconductor–ferromagnet systems, Russ. J. Inorg. Chem., 2015, vol. 60, no. 3, pp. 295–300. doi 10.1134/S0036023615030146CrossRefGoogle Scholar
  15. 15.
    Yanushkevich, K.I., Metodika vypolneniya izmerenii namagnichennosti i magnitnoi vospriimchivosti (Procedure of Magnetization and Magnetic Susceptibility Measurements), Sistema obespecheniya edinstva izmerenii Respubliki Belarus’ (Measurement Uniformity System in the Republic of Belarus), Minsk: BelGIM, 2009.Google Scholar
  16. 16.
    Okamoto, H., The As–Mn (arsenic–manganese) system, Bull. Alloy Phase Diagrams, 1989, vol. 10, no. 5, pp. 549–554.CrossRefGoogle Scholar
  17. 17.
    Diagrammy sostoyaniya dvoinykh metallicheskikh sistem. Spravochnik v 3 t. (Phase Diagrams of Binary Metallic Systems: A Handbook in Three Volumes), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, vol. 1.Google Scholar
  18. 18.
    Mitsiuk, V.I., Pankratov, N.Yu., Govor, G.A., et al., Magnetostructural phase transitions in manganese arsenide single crystals, Phys. Solid State, 2012, vol. 54, no. 10, pp. 1865–1872.CrossRefGoogle Scholar
  19. 19.
    Pankratov, N.Yu., Mitsiuk, V.I., Krokhotin, A.I., et al., Giant magnetocaloric effect in the region of magnetic phase transition in Mn(As,Sb) compounds, Solid State Phenom., 2012, vol. 190, pp. 343–346.CrossRefGoogle Scholar
  20. 20.
    Govor, G.A., First-order phase transition in manganese arsenide, Phys. Solid State, 2015, vol. 57, no. 5, pp. 871–872.CrossRefGoogle Scholar
  21. 21.
    Zieba, A., Shapira, Y., and Foner, S., Magnetic phase diagram of MnAs: effect of magnetic field on structural and magnetic transitions, Phys. Lett., 1982, vol. 91, no. 5, pp. 243–245.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. F. Marenkin
    • 1
    • 2
    Email author
  • A. N. Aronov
    • 1
  • I. V. Fedorchenko
    • 1
  • A. L. Zheludkevich
    • 3
  • A. V. Khoroshilov
    • 1
  • V. V. Kozlov
    • 4
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Steel and Alloys (National University of Science and Technology)MoscowRussia
  3. 3.Scientific–Practical Materials Research Centre (State Research and Production Association), Belarussian Academy of SciencesMinskBelarus
  4. 4.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations