Inorganic Materials

, Volume 54, Issue 12, pp 1216–1222 | Cite as

Preparation of Cast Mo2B5 by Self-Propagating High-Temperature Synthesis Metallurgy Methods

  • V. A. GorshkovEmail author
  • N. V. Sachkova
  • N. Yu. Khomenko


This paper reports the preparation of cast dimolybdenum pentaboride by a self-propagating high-temperature synthesis (SHS) metallurgy method. Experiments were carried out in SHS reactors at an initial excess gas (Ar) pressure p0 = 5 MPa. In the experiments, we used thermite-type starting mixtures consisting of molybdenum oxide, aluminum, boron oxide, and elemental boron powders. The combustion of such mixtures yields two types of final product: Mo2B5 and Al2O3. The combustion temperatures of the starting mixtures used in our experiments have been shown to exceed the melting points of the final products, which are thus formed in a liquid (cast) state. Under the effect of gravity, the heavier phase Mo2B5 settles down to form a lower ingot, whereas the lighter phase Al2O3 forms an upper ingot. The synthesis products have been characterized by X-ray diffraction and local microstructural analysis. The results demonstrate that the composition and amount of the starting mixture have a significant effect on the synthesis parameters and the composition and microstructure of the Mo2B5. We have optimized conditions for the preparation of single-phase cast dimolybdenum pentaboride.


boride ceramics cast dimolybdenum pentaboride self-propagating high-temperature synthesis metallurgy combustion crystallization phase composition microstructure 



  1. 1.
    Akhmetov, N.S., Obshchaya i neorganicheskaya khimiya (General and Inorganic Chemistry), Moscow: Vysshaya Shkola, 1998, p. 744.Google Scholar
  2. 2.
    Samsonov, G.V., Serebryakova, T.I., and Neronov, V.A., Boridy (Borides), Moscow: Atomizdat, 1975, p. 375.Google Scholar
  3. 3.
    Serebryakova, T.I., Neronov, V.A., and Peshev, P.D., Vysokotemperaturnye boridy (High-Temperature Borides), Moscow: Metallurgiya, 1991, p. 367.Google Scholar
  4. 4.
    Kornilov, I.I., Metallidy i vzaimodeistvie mezhdu nimi (The Chemistry of Metallides), Moscow: Nauka, 1964, p. 181.Google Scholar
  5. 5.
    Samsonov, G.V., Markovskii, L.Ya., Zhigach, A.F., and Valyashko, M.G., Bor, ego soedineniya i splavy (Boron and Boron Compounds and Alloys), Kiev: Akad. Nauk Ukr. SSR, 1960, p. 589.Google Scholar
  6. 6.
    Volkov, A.I. and Zharskii, I.M., Bol’shoi khimicheskii spravochnik (An Unabridged Chemical Handbook), Minsk: Sovremennaya Shkola, 2005, p. 608.Google Scholar
  7. 7.
    Merzhanov. A.G. SHS on the Pathway to Industrialization, Int. J. Self.-Propag. High-Temp. Synth., 2001, vol. 10, no. 2, pp. 237–256.Google Scholar
  8. 8.
    Merzhanov, A.G., Kontseptsiya razvitiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza kak oblasti nauchno-tekhnicheskogo progressa (Concept of Self-Propagating High-Temperature Synthesis Development as an Area of Science and Technology Progress), Chernogolovka: Territoriya, 2003, p. 368.Google Scholar
  9. 9.
    Merzhanov, A.G., The chemistry of self-propagating high-temperature synthesis, J. Mater. Chem., 2004, vol. 14, no. 12, pp. 1779–1786.CrossRefGoogle Scholar
  10. 10.
    Levashov, E.A., Mukasyan, A.S., Rogachev, A.S., and Shtansky, D.V., Self-propagating high-temperature synthesis of advanced materials and coatings, Int. Mater. Rev., 2017, vol. 62, no. 4, pp. 203–239. doi 10.1080/09506608.2016.1243291CrossRefGoogle Scholar
  11. 11.
    Yukhvid, V.I., High-temperature liquid-phase SHS processes: new trends and task objectives, Izv. Vyssh. Uchebn. Zaved., Tsvet. Metall., 2006, no. 5, pp. 62–78.Google Scholar
  12. 12.
    Yukhvid, V.I., Gorshkov, V.A., Miloserdov, P.A., Skachkova, N.V., Alymov, M.I., Nolze, G., and Epishin, A., Synthesis of molybdenum and niobium mono- and binary silicides by the method of SHS-metallurgy, Adv. Eng. Mater., 2016, vol. 18, no. 11, pp. 1930–1935. doi 10.1002/adem.201600334CrossRefGoogle Scholar
  13. 13.
    Gorshkov, V.A., Miloserdov, P.A., and Kovalev, I.D., Cast ceramics by metallothermic SHS under elevated argon pressure, Int. J. Self.-Propag. High-Temp. Synth., 2017, vol. 26, no. 1, pp. 60–64.CrossRefGoogle Scholar
  14. 14.
    Gorshkov, V.A., Miloserdov, P.A., Luginina, M.A., Sachkova, N.V., and Belikova, A.F., High-temperature synthesis of a cast material with a maximum content of the MAX phase Cr2AlC, Inorg. Mater., 2017, vol. 53, no. 3, pp. 271–277. doi +CrossRefGoogle Scholar
  15. 15.
    Gorshkov, V.A. and Miloserdov, P.A., Scale Factor Effect on the synthesis of cast binary silicides of Mo, W, Nb, and Ti, Russ. J. Phys. Chem. B, 2015, vol. 9, no. 2, pp. 283–288.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. A. Gorshkov
    • 1
    Email author
  • N. V. Sachkova
    • 1
  • N. Yu. Khomenko
    • 1
  1. 1.Institute of Structural Macrokinetics and Materials Science, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations