Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Optical Emission and Langmuir Probe Diagnostic Measurements in DC Electrode Pulse Discharge in Nitrogen

  • 4 Accesses

Abstract

Optical emission of selected nitrogen bands is analyzed for different nitrogen fill pressure and input electrical power to find the changes in spectral intensities with changing discharge conditions. The electron temperature Te is inferred from the intensity ratio \(\left( {{{I_{{BX}}^{ + }} \mathord{\left/ {\vphantom {{I_{{BX}}^{ + }} {{{I}_{{CB}}}}}} \right. \kern-0em} {{{I}_{{CB}}}}}} \right)\) of (0–0, 391.44 nm) and (0–2, 380.49 nm) band heads whereas electron number density ne from the intensity ratio and the corresponding rate coefficient X (cm3 s–1) for the given temperatures. Both band heads belonging to the first negative system and second positive system of nitrogen have a different threshold of excitation energies, and therefore the corresponding emission intensities provide a direct correlation between the group of electrons involved in optical emission (a part of electron energy distribution function above the excitation and ionization thresholds) and electron temperature. Measured intensity ratio \(\left( {{{I_{{BX}}^{ + }} \mathord{\left/ {\vphantom {{I_{{BX}}^{ + }} {{{I}_{{CB}}}}}} \right. \kern-0em} {{{I}_{{CB}}}}}} \right)\) and resulting Te both increase with input power and decrease with gas fill pressure following almost the same trend. Besides, time-averaged triple probe measurements have been performed to determine Teff and ne under the same discharge conditions for the sake of comparison. The spectroscopic method provides the variation of Te and ne at various discharge power and gas pressure in comparison with probe measurements. This study will help to optimize the discharge conditions in terms of active species concentration, electron temperature and electron number density for technological applications.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    Liang, W., Appl. Surf. Sci., 2003, vol. 211, p. 308.

  2. 2

    Baranowska, J., Kusior,E., Amigo, V., and Szczecinski, K., Vacuum, 2005, vol. 78, p. 389.

  3. 3

    Qayyum, A., Ahmad, R., Waheed, A., and Zakaullah, M., Eur. Phys. J. Appl. Phys., 2005, vol. 32, p. 45.

  4. 4

    Kumar, S., Baldwin, M.J., Fewell, M.P., Haydon, S.C., Short, K.T., Collins, G.A., and Tendys, J., Surf. Coat. Technol., 2000, vol. 123, p. 29.

  5. 5

    Machala, Z., Laux, C.O., and Kruger, C.H., IEEE Trans. Plasma Sci. 2005, vol. 33, p. 320.

  6. 6

    Buntat, Z., Smith, I.R., and Razali, N.A.M., J. Phys. D Appl. Phys., 2009, vol. 42, p. 235 202.

  7. 7

    Okazaki, S., Kogoma, M., Uehara, M., and Kimura, Y., J. Phys. D Appl. Phys., 1993, vol. 26, p. 889.

  8. 8

    Hanley, L. and Sinnott, S.B., Surf. Sci., 2002, vol. 500, p. 500.

  9. 9

    Walkowicz, J., Supiot, P., Smolik, J., and Grushin, M., Surf. Coat. Technol., 2004, vol. 181, p. 407.

  10. 10

    Gontijo, L.C., Machado, R., Miola, E.J., Casteletti, L.C., and Nascente, P.A., Surf. Coat. Technol., vol. 183, p. 10.

  11. 11

    Bogaerts, A., Neyts, E., Gijbels, R., and van der Mullen, J., Spectrochim. Acta B, 2002, vol. 57, p. 609.

  12. 12

    Chen, F.F., Phys. Plasmas, 1995, vol. 2, p. 2164.

  13. 13

    Fantz, U., Plasma Sources Sci. Technol., 2006, vol. 15, p. 137.

  14. 14

    Qayyum, A., Zeb S., Naveed, M.A., Ghauri, S.A., and Zakaullah, M., J. Appl. Phys., 2005, vol. 98, p. 103 303.

  15. 15

    Qayyum, A., Zeb, S., Naveed, M.A., Rehman, N.U., Ghauri, S.A., and Zakaullah, M., J. Quantitat. Spectrosc. Radiat. Transf., 2007, vol. 107, p. 361.

  16. 16

    Qayyum, A, Ahmad, S., Deeba, F., and Hussain, S., High Temp., 2016, vol. 54, p. 905.

  17. 17

    Liu, J., Sun, F., and Yu, H., Curr. Appl. Phys., 2005, vol. 5, p. 625.

  18. 18

    Chen, S. Li, and Sekiguchi, T., J. Appl. Phys., 1965, vol. 36, p. 2363.

  19. 19

    Meng, L., Cloud, A.N., Jung, S., and Ruzic, D.N., J. Vac. Sci. Technol. A, 2011, vol. 29, p. 011 024.

  20. 20

    Qayyum, A., Ahmad, S., Khan R., Hussain, S., Deeba, F., Javed, A., Ali, R., and Mehmood, S., J. Fusion Energy, 2016, vol. 35, p. 205.

  21. 21

    Qin, Y., Rev. Sci. Instrum., 2005, vol. 76, p.116 102.

  22. 22

    Behringer, K., Plasma Phys. Control. Fusion, 1991, vol. 33, p. 997.

  23. 23

    Isola, L.M., Gomez, B.J., and Guerra, V., J. Phys. D Appl. Phys., 2010, vol. 43, p. 015 202.

  24. 24

    Kimura, T., and Kasugai, H., J. Appl. Phys., 2010, vol. 108, p. 033 305.

  25. 25

    Britun, N., Gaillard, M., Ricard, A., Kim, Y.M., Kim, K.S., and Han, J.G., J. Phys. D Appl. Phys., 2007, vol. 40, p. 1022.

  26. 26

    Zhu, Xi-M. and Pu, Yi-K., Phys. Plasmas, 2006, vol. 13, p. 063 507.

  27. 27

    Zhu, Xi-M. and Pu, Yi-K., Plasma Sources Sci. Technol., 2008, vol. 17, p. 024 002.

  28. 28

    Bora, B., Bhuyan, H., Favre, M., Wyndham, E., Chuaqui, H., and Wong, C.S., Curr. Appl. Phys., 2013, vol. 13, p. 1448.

  29. 29

    Nassar, H., Pellerin, S., Musiol, K., Martinie, O., Pellerin, N., and Cormier J.-M., J. Phys. D: Appl. Phys., 2004, vol. 37, p. 1904.

  30. 30

    Coitout, H. and Cernogora, G., J. Phys. D Appl. Phys., 2006, vol. 39, p. 1821.

  31. 31

    Behringer, K. and Fantz, U., J. Phys. D Appl. Phys., 1994, vol. 27, p. 2128.

  32. 32

    Levaton, J., Amorim, J., Monna, V., Nagai, J., and Ricard, A., Eur. Phys. J. Appl. Phys., 2004 vol. 26, p. 59.

  33. 33

    Lebedev, Yu.A., Solomakhin, P.V., and Shakhatov, V.A., Plasma Physics Reports, 2008, vol. 34, p. 562.

  34. 34

    Shakhatov, V.A. and Lebedev, Yu.A., High Energy Chemistry, 2008, vol. 42, p. 170.

  35. 35

    Lebedev, Yu.A. and Shakhatov, V.A., High Temp., 2008, vol. 44, p. 795.

  36. 36

    Cicala, G., de Tommaso, E., Raino, A.C., Lebedev, Yu.A., and Shakhatov, V.A., Plasma Sources Sci. Technol., 2009, vol. 18, p. 025 032.

  37. 37

    Bodronosov, A.V., Vereshchagin, K.A., Gordeev, O.A., Smirnov V.V., and Shakhatov, V.A., High Temp., 1996, vol. 34, p. 656.

  38. 38

    Lebedev, Yu.A. and Shakhatov, V.A., Plasma Phys. Rep., 2006, vol. 32, p.58.

Download references

ACKNOWLEDGEMENTS

The authors are grateful to Dr. Sajid Mehmood (Late) from National Tokamak Fusion Program (NTFP) for his valuable suggestions that help to improve the quality of paper. The authors also take this opportunity to thank Dr. S.M. Javed Akhtar, ex. member science, and Mr. Liaqat Ali DG TNO for their endless support.

Funding

Financial support from Planning Commission of Pakistan and IAEA through Coordinated Research Project (CRP) “Utilization of the Network of Small and Medium Size Magnetic Confinement Fusion Devices for Fusion Research (F13019)” under Contract no. 22771 is also acknowledged.

Author information

Correspondence to A. Qayyum.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qayyum, A., Deeba, F., Ahmad, S. et al. Optical Emission and Langmuir Probe Diagnostic Measurements in DC Electrode Pulse Discharge in Nitrogen. High Temp 57, 821–831 (2019). https://doi.org/10.1134/S0018151X19070022

Download citation