Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Synthesis and Investigation of Al/Sn/La2O3 Nanocomposite for Gate Dielectric Applications

Abstract

In this research, TGA technique was used for determining thermal and gravimetrical stability of Al/Sn/La2O3 nanostructures prepared by sol-gel and spin-coating methods. Structural properties and surface morphology of the films were investigated by different analysis methods. Energy dispersive X-ray spectroscopy and a map were used to make a quantitative chemical analysis of unknown materials. Electrical properties of the samples were measured by metal-dielectric-semiconductor through capacitance–voltage and current rate–voltage. The conduction mechanism in the electrical field below 0.12 MV/cm and in the temperature range of 335 K < T < 420 K was found to be ohmic emission. A model of thermal excitation is proposed to explain the mechanism of ohmic conduction current. The highest value of dielectric constant (k) was ~32 at T1 = 200°C with almost amorphous structure. The results showed that at T1 = 200°C the Al/Sn/La2O3 nanostructure has lower leakage current rate and higher capacitance than those for other samples because of almost amorphous structure.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. 1

    Morgan, P., Bahari, A., and Robenhagen, U., J. Vac. Sci. Technol., A, 2005, no. 23, p. 201.

  2. 2

    Bahari, A., Ebrahimzadeh, M., and Gholipur, R., Int. J. Mod. Phys. B, 2014, vol. 28, 1 450 102.

  3. 3

    Khorshidi, Z., Bahari, A., and Gholipur, R., J. Electron. Mater., 2014, vol. 48, no. 11, p. 4349.

  4. 4

    Kuei, P.Y., Chou, J.D., Huang, C.T., Ko, H.H., and Su, S.C., J. Cryst. Growth, 2011, vol. 314, no. 1, p. 81.

  5. 5

    Bahari, A. and Ramzannejad, A., Int. J. Mod. Phys. B, 2012, vol. 26, 1 250 080.

  6. 6

    Bahari, A., Morgan, P., and Li, Z., Surf. Sci., 2008, vol. 602, p. 2315.

  7. 7

    Promsuy, S., Tangtrakarn, A., Mongkolkachit, C., Wanakitti, S., and Amornkitbamrung, V., J. Sol-Gel Sci. Technol., 2015, vol. 74, p. 187.

  8. 8

    Bahari, A. and Gholipur, R., Int. J. Mod. Phys. B, 2012, vol. 26, 1250191.

  9. 9

    Chowdhury, H.M., Mannan, A.M., and Mahmood, A.S., Emerging Tech. Sci. Eng., 2010, vol. 2, p. 1.

  10. 10

    Bahari, A. and Roodbari, M., J. Mod. Phys., 2013, vol. 4, p. 1.

  11. 11

    Kale, S., Jadhav, K., Patil, P., Gujar, T., and Lokhande, C., Mater. Lett., 2005, vol. 59, p. 3007.

  12. 12

    Houssa, M., Tuominen, M., Naili, M., Afanas’ev, V., Stesmans, A., Haukka, S., and Heyns, M., J. Appl. Phys., 2000, vol. 87, p. 8615.

  13. 13

    Ng, J.A., Kuroki, Y., and Sugi, N., Microelectron. Eng., 2005, vol. 80, p. 206.

  14. 14

    Eslami, A., Haghighi, M., Rahemi, N., and Nasiri Laheghi, S., Int. Conf. Adv. Mater. Proc. Technol., 2010, p. 1297.

  15. 15

    Bahari, A. and Gholipur, R., J. Electron. Mater., 2013, vol. 12, p. 3539.

  16. 16

    Xu, W., Xia, L., Ju, J., Xi, P., Cheng, B., and Liang, Y., J. Sol-Gel Sci. Technol., 2016, vol. 78, p. 353.

  17. 17

    Okamura, K., Nasr, B., Brand, R.A., and Hahn, H., J. Mater. Chem., 2012, vol. 22, no. 11, p. 4607.

  18. 18

    Thanachayanont, C., Yordsri, V., and Boothroyd, C., Mater. Lett., 2011, vol. 65, p. 2610.

  19. 19

    Refa, M. and Melsabawy, K., Bull. Mater. Sci., 2011, vol. 4, p. 873.

  20. 20

    Roodbari, M., Rezaee, M., and Shahtahmasbi, N., Int. J. ChemTech. Res., 2011, vol. 3, p. 1681.

  21. 21

    Hansen, N., Scr. Mater., 2004, vol. 51, p. 801.

  22. 22

    Bahari, A. and Gholipur, R., J. Mater. Sci.: Mater. Electron., 2012, vol. 24, p. 674.

  23. 23

    Hayati, A., Bahari, A., Ramzannejad, A., and Jafari, R., Res. J. Recent Sci., 2015, vol. 4, p. 23.

  24. 24

    Ashcroft, N.W. and Mermin, N.D., Solid State Physics, New York: Holt, Rinehart and Winston, 1976, p. 16.

  25. 25

    Yamaguchi, T., Satake, H., Fukushima, N., and Toriumi, A., Int. Electron Devices Meet., 2000, vol. 63, p. 19.

  26. 26

    Sze, S.M., Physics of Semiconductor Devices, New York: Wiley, 1981, 2nd ed.

  27. 27

    Houssa, M., Tuominen, M., Naili, M., Afanas, V., Stesmans, A., Haukka, S., and Heyns, M., J. Appl. Phys., 2000, vol. 87, p. 8615.

  28. 28

    Mahapatra, R., Lee, J.H., Maikap, S., Kar, G.S., Dhar, A., Hwang, N.M., Kim, D.Y., Mathur, B.K., and Ray, S.K., Appl. Phys. Lett., 2003, vol. 82, p. 2320.

Download references

Author information

Correspondence to M. Nakhaei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakhaei, M., Ebrahimzadeh, M., Padam, M. et al. Synthesis and Investigation of Al/Sn/La2O3 Nanocomposite for Gate Dielectric Applications. High Temp 57, 870–877 (2019). https://doi.org/10.1134/S0018151X19060191

Download citation