Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Stationary Temperature Field of a Separation System with Active Thermal Protection Possessing Feedback and Anisotropic Coating

  • 1 Accesses

Abstract

The problem of the determination of the stationary temperature field of a system simulated by a wall separating two different media is formulated. On the one hand, the wall is equipped with an anisotropic thermal-protective coating, which is exposed to local thermal effects in conditions of heat transfer with the external environment, as well as a thermoactive gasket that operates according to the feedback principle. The solution was obtained with the methods of integral transformations in an analytically closed form.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, Oxford: Clarendon, 1959, 2nd ed.

  2. 2

    Lykov, A.V., Teoriya teploprovodnosti (Heat Conduction Theory), Moscow: Vysshaya Shkola, 1967.

  3. 3

    Kartashov, E.M., Analiticheskie metody v teorii teploprovodnosti tverdykh tel (Analytical Methods in the Theory of Thermal Conductivity of Solids), Moscow: Vysshaya Shkola, 2001.

  4. 4

    Formalev, V.F., Teploprovodnost’ anizotropnykh tel. Analiticheskie metody resheniya zadach (Thermal Conductivity of Anisotropic Bodies: Analytical Methods for Solving Problems), Moscow: Fizmatlit, 2014.

  5. 5

    Polezhaev, Yu.V. and Yurevich, F.B., Teplovaya zashchita (Thermal Protection), Moscow: Energiya, 1976.

  6. 6

    Zarubin, V.S., Raschet i optimizatsiya termoizolyatsii (Calculation and Optimization of Thermal Insulation), Moscow: Energoatomizdat, 1991.

  7. 7

    Polezhaev, Yu.V. and Shishkov, A.A., Gazodinamicheskie ispytaniya teplovoi zashchity (Gas-Dynamic Tests of Thermal Protection), Moscow: Promedak, 1992.

  8. 8

    Galitseiskii, B.M., Sovershennyi, V.D., and Formalev, V.F., Teplovaya zashchita lopatok turbin (Thermal Protection of Turbine Blades), Moscow: Mosk. Aviats. Inst., 1996.

  9. 9

    Formalev, V.F., Chipashvili, A.A., and Mikanev, S.V., Izv. Ross. Akad. Nauk, Energ., 2004, no. 5, p. 147.

  10. 10

    Formalev, V.F., Kolesnik, S.A., and Chipashvili, A.A., High Temp., 2006, vol. 44, no. 1, p. 108.

  11. 11

    Formalev, V.F., Kolesnik, S.A., Selin, I.A., and Kuznetsova, E.L., High Temp., 2017, vol. 55, no. 1, p. 101.

  12. 12

    Attetkov, A.V., Volkov, I.K., and Tverskaya, E.S., Izv. Ross. Akad. Nauk, Energ., 2002, no. 4, p. 131.

  13. 13

    Attetkov, A.V., Volkov, I.K., and Tverskaya, E.S., Izv. Ross. Akad. Nauk, Energ., 2009, no. 2, p. 147.

  14. 14

    Volkov, I.K. and Tverskaya, E.S., Nauka Obraz., 2012, no. 5, p. 172.

  15. 15

    Formalev, V.F., Teploperenos v anizotropnykh tverdykh telakh. Chislennye metody, teplovye volny, obratnye zadachi (Heat Transfer in Anisotropic Solids: Numerical Methods, Heat Waves, Inverse Problems), Moscow: Fizmatlit, 2015.

  16. 16

    Attetkov, A.V. and Volkov, I.K., Izv. Ross. Akad. Nauk, Energ., 2014, no. 3, p. 69.

  17. 17

    Formalev, V.F., Kolesnik, S.A., and Kuznetsova, E.L., High Temp., 2017, vol. 55, no. 5, p. 761.

  18. 18

    Attetkov, A.V., Vlasov, P.A., and Volkov, I.K., High Temp., 2018, vol. 56, no. 3, p. 389.

  19. 19

    Attetkov, A.V. and Volkov, I.K., Izv. Ross. Akad. Nauk, Energ., 2018, no. 1, p. 78.

  20. 20

    Negoitǎ, C.V., Management Applications of System Theory, Basel: Birkhäuser, 1980.

  21. 21

    Desoer, C.A. and Vidyasagar, M., Feedback Systems: Input–Output Properties, New York: Elsevier, 1975.

  22. 22

    Koshlyakov, N.S., Gliner, E.B., and Smirnov, M.M., Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki (Partial Differential Equations of Mathematical Physics), Moscow: Vysshaya Shkola, 1970.

  23. 23

    Pudovkin, M.A. and Volkov, I.K., Kraevye zadachi matematicheskoi teorii teploprovodnosti v prilozhenii k raschetam temperaturnykh polei v neftyanykh plastakh pri zavodnenii (Boundary-Value Problems of the Mathematical Theory of Thermal Conductivity as Applied to Calculations of Temperature Fields in Oil Reservoirs during Flooding), Kazan: Kazansk. Gos. Univ., 1978.

  24. 24

    Elsgolts, L., Differential Equations and Calculus of Variations, Moscow: Mir, 1977.

  25. 25

    Sneddon, I.N., Fourier Transforms, New York: McGra-w-Hill, 1951.

  26. 26

    Bellman, R.E., Introduction to Matrix Analysis, London: McGraw-Hill, 1960.

  27. 27

    Ditkin, V.A. and Prudnikov, A.P., Operatsionnoe ischislenie (Operational Calculus), Moscow: Vysshaya shkola, 1966.

  28. 28

    Attetkov, A.V. and Volkov, I.K., Tepl. Protsessy Tekh., 2016, vol. 8, no. 8, p. 378.

  29. 29

    Attetkov, A.V. and Volkov, I.K., Izv. Ross. Akad. Nauk, Energ., 2012, no. 5, p. 70.

Download references

Author information

Correspondence to A. V. Attetkov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Attetkov, A.V., Vlasov, P.A. & Volkov, I.K. Stationary Temperature Field of a Separation System with Active Thermal Protection Possessing Feedback and Anisotropic Coating. High Temp 57, 878–884 (2019). https://doi.org/10.1134/S0018151X1906004X

Download citation