Advertisement

High Temperature

, Volume 57, Issue 3, pp 338–342 | Cite as

Density and Adiabatic Compressibility of LiF + KBr Mixtures in the Two-Phase Region

  • V. P. StepanovEmail author
THERMOPHYSICAL PROPERTIES OF MATERIALS
  • 2 Downloads

Abstract

In this paper, we experimentally studied the adiabatic compressibility β of an exfoliating liquid mixture, LiF +KBr, on the saturation line in a temperature range from the melting point to the critical mixing temperature using the sound velocity u measured by the pulse method and the density ρ determined by hydrostatic weighing based on the ratio β = u–2ρ–1.The coefficients of the temperature dependences of the compressibility and density of the upper and lower equilibrium phases are shown to have opposite signs due to the superposition of the thermal motion of ions and changes in the phase composition. The reduced differences β* and ρ* ​​for the contacting phases decrease with decreasing reduced temperature T* in accordance with the empirical exponential equations β* ≈ T*1.017 and ρ* ≈ T* 0.494.

Notes

REFERENCES

  1. 1.
    Molten Salts Chemistry: From Lab to Applications, Lantelme, F. and Groult, H., Eds., Amsterdam: Elsevier, 2013.Google Scholar
  2. 2.
    Cairns, E.I. and Stennenberg, R.K., High-temperature batteries,in Program on High-Temperature Physics and Chemistry, Chem. Eng. Div., Argonne Natl. Lab., Oxford, 1973, vol. 5, p. 63.Google Scholar
  3. 3.
    Ignatiev, V.V., Feynberg, O.S., Zagnitko, A.V., Merzlyakov, A.V., Surenkov, A.I., Panov, A.V., Subbotin, V.G., Afonichkin, V.K., Khokhlov, V.A., and Kormilitsyn, M.V., At. Energy, 2012, vol. 112, no. 3, p. 157.CrossRefGoogle Scholar
  4. 4.
    Wilson, M. and Madden, P.A., J. Phys.: Condens. Matter, 1993, vol. 5, p. 2687.ADSGoogle Scholar
  5. 5.
    Tkachev, N.K., High Temp., 1998, vol. 36, no. 4, p.559.Google Scholar
  6. 6.
    Tkachev, N.K. and Peshkina, K.G., High Temp., 2016, vol. 54, no. 2, p. 300.CrossRefGoogle Scholar
  7. 7.
    Bockris, J.O’M. and Richards, N.E., Proc. R. Soc. A, 1957, vol. 241.Google Scholar
  8. 8.
    Smirnov, M.V., Minchenko, V.I., and Bukharov, A.N., Electrochim. Acta, 1988, vol. 33, no. 2, p. 213.CrossRefGoogle Scholar
  9. 9.
    Sternberg, S. and Vasilescu, V., J. Chem. Thermodyn., 1971, vol. 3, p. 877.CrossRefGoogle Scholar
  10. 10.
    Smirnov, M.V., Minchenko, V.I., Konovalov, Yu.V., and Stepanov, V.P., Zh. Fiz. Khim., 1983, vol. 57, no. 2, p. 430.Google Scholar
  11. 11.
    Stepanov, P.V., High Temp., 2018, vol. 56, no. 5, p. 689.CrossRefGoogle Scholar
  12. 12.
    Smirnov, M.V., Stepanov, V.P., and Khokhlov, V.A., Rasplavy, 1987, vol. 1, no. 1, p. 64.Google Scholar
  13. 13.
    Tkachev, N.K., Rasplavy, 1999, no. 4, p. 90.Google Scholar
  14. 14.
    Neruchev, Yu.A., Bolotnikov, M.F., Zotov, V.V., High Temp., 2005, vol. 43, no. 2, p. 266.CrossRefGoogle Scholar
  15. 15.
    Fisher, M.E., J. Stat. Phys., 1994, vol. 75, p. 1.ADSCrossRefGoogle Scholar
  16. 16.
    Stell, G.S., J. Stat. Phys., 1995, vol. 78, p. 197.ADSCrossRefGoogle Scholar
  17. 17.
    Schröer, W., in Ionic Soft Matter: Modern Trends in Theory and Applications, Henderson, D., Eds., Berlin: Springer, 2005, p. 143.Google Scholar
  18. 18.
    Stepanov, V.P. and Minchenko, V.I., J. Chem. Thermodyn., 2011, vol. 43, p. 467.CrossRefGoogle Scholar
  19. 19.
    Stepanov, V.P. and Minchenko, V.I., J. Chem. Eng. Data, 2014, vol. 59, p. 3888.CrossRefGoogle Scholar
  20. 20.
    Stepanov, V.P. and Minchenko, V.I., J. Chem. Thermodyn., 2015, vol. 87, p. 65.CrossRefGoogle Scholar
  21. 21.
    Bitrian, V., Trullas, J., and Silbert, M., J. Chem. Phys., 2007, vol. 126, 021105.ADSCrossRefGoogle Scholar
  22. 22.
    Wilson, M., Madden, P.A., and Costa-Cabral, B.J., J. Phys. Chem., 1996, vol. 100, p. 1227.CrossRefGoogle Scholar
  23. 23.
    Margheritis, Ch., Flor, G., and Sinistri, C., Z. Naturforsch., A: Phys. Sci., 1973, vol. 28a, p. 1329.Google Scholar
  24. 24.
    Shishkin, V.Yu. and Mityaev, V.S., Izv. Akad. Nauk SSSR, Neorg. Mater., 1982, vol. 18, no. 11, p. 1917.Google Scholar
  25. 25.
    Janz, G.J., Dampier, F.W., Lakshminarayan, G.R., Lorenz, P.K., and Tomkins, R.P.T., Molten Salts, National Standard Reference Data, NBS, Gaithersburg, MD: National Institute of Standards and Technology, 1968, vol. 15, p. 1.Google Scholar
  26. 26.
    Stepanov, V.P., Kulik, N.P., and Peshkina, K.G., J. Chem. Thermodyn., 2013, vol. 63, p. 84.CrossRefGoogle Scholar
  27. 27.
    Smirnov, M.V. and Stepanov, V.P., Electrochim. Acta, 1982, vol. 27, no. 11, p. 1551.CrossRefGoogle Scholar
  28. 28.
    Landau, L.D. and Lifshits, E.M.,Teoreticheskaya fizika (Theoretical Physics), vol. 5: Statisticheskaya fizika (Statistical Physics), Moscow: Nauka, 1976.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal University Named after the First President of Russia B.N. YeltsinYekaterinburgRussia

Personalised recommendations