Advertisement

High Temperature

, Volume 57, Issue 3, pp 316–321 | Cite as

Analysis of the Operation of the Microwave Ion Source in the Electron–Cyclotron Resonance Mode for a Portable Neutron Generator

  • D. S. Stepanov
  • A. V. Chebotarev
  • E. Ya. Shkol’nikovEmail author
PLASMA INVESTIGATIONS

Abstract

The authors present the results of numerical simulation of the kinetic processes in deuterium microwave-resonator plasmas with electron–cyclotron resonance at a nonuniform distribution of the magnetic and electric fields. For the actual configuration of the resonator module, the authors show the optimal magnetic field distribution in terms of energy efficiency. The solution of the kinetic scheme of the microwave discharge in deuterium plasmas makes it possible to relate the gas-discharge plasma properties with the parameters of the deuterium-ion source: the residual gas pressure, the gas flow into the microwave resonator, the charged particle flows on the wall and into the ion-optical system, the electrical and magnetic field strength and distribution in the resonator, and the power input into it. The results make it possible to reveal and implement generator operation modes with the highest characteristics ever recorded.

Notes

FUNDING

The work is supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 14.575.21.0169 (RFMEFI57517X0169).

REFERENCES

  1. 1.
    Vainionpaa, J.H., Gough, R., Hoff, M., et al., in Proc. Particle Accelerator Conference, Albuquerque: Inst. Electrical and Electronics Engineers, 2007, 9889878.Google Scholar
  2. 2.
    Vainionpaa, J.H., Allan, X.C., Melvin, A.P., et al., Nucl. Instrum. Methods Phys. Res., Sect. B, 2015, vol. 350, p. 88.Google Scholar
  3. 3.
    Storozhev, D.A., Kuratov, S.E., and Surzhikov, S.T., Fiz.-Khim. Kin. Gaz. Din., 2015, vol. 16. no. 4.Google Scholar
  4. 4.
    Storozhev, D.A., Surzhikov, S.T., and Kuratov, S.E., Numerical Simulation of dissociation kinetics in the penning discharge plasma using 2D modified drift-diffusion model, AIAA Pap. 2017-1966, 2017.Google Scholar
  5. 5.
    Stepanov, D.S., Chebotarev, A.V., and Shkol’nikov, E.Ya., High Temp., 2018, vol. 56, no. 6, p. 843.CrossRefGoogle Scholar
  6. 6.
    Shakhatov, V.A. and Lebedev, Yu.A., Plasma Phys. Rep., 2018, vol. 44, no. 1, p. 126.CrossRefGoogle Scholar
  7. 7.
    Kwan, J.W., Gough, R., Keller, R., et al., High Energy Phys. Nucl. Phys., 2007, vol. 31, no. 1 (suppl.), p. 232.Google Scholar
  8. 8.
    Zhizhong Song, Shixiang Peng, Jinxiang Yu, et al. Rev. Sci. Instrum., 2006, vol. 77, 03A305.Google Scholar
  9. 9.
    Zhdanov, S.K., Kurnaev, V.A., Romanovskii, M.K., and Tsvetkov, I.V., Osnovy fizicheskikh protsessov v plazme i plazmennykh ustanovkakh (Fundamental Physical Processes in Plasma and Plasma Installations), Moscow: Nats. Issled. Yad. Univ. “MIFI,” 2015.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. S. Stepanov
    • 1
  • A. V. Chebotarev
    • 1
  • E. Ya. Shkol’nikov
    • 1
    Email author
  1. 1.National Research Nuclear University, Moscow Engineering Physics Institute (MEPhI)MoscowRussia

Personalised recommendations