Advertisement

High Temperature

, Volume 57, Issue 3, pp 379–387 | Cite as

Experimental Study of the Influence of the Shape of the Gap between the Rib and Flat Plate on the Near-Wall Flow Structure and Heat Transfer

  • S. A. Isaev
  • V. N. Afanasiev
  • K. S. Egorov
  • Dehai KongEmail author
HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS

Abstract

The article presents an analysis of the results of an experimental study of the dynamic and thermal characteristics of the turbulent boundary layer of the air near a heated plate at qw = const with rectangular ribs having slit channels of different geometry: confusor, diffuser, and plane-parallel. The slit channel is located between the plate and the lower rib wall. The results are compared with similar data for a solid rib without the slit channel. A Pitot–Prandtl microprobe with a microthermocouple and the Dantec Dynamics hot-wire anemometer were used, thus making it possible to study the laminar sublayer, the transition domain, and the outer part of the boundary layer. The influence of the slit profile on the average and the pulsation characteristics of the turbulent dynamic and thermal boundary layers in the median section of the plate with the slit rib is revealed. It is found that the separated zone disappears in the flow behind the ribs with the confusor slit.

Notes

FUNDING

The work is partly supported by the Russian Foundation for Basic Research, project no. 18-58-52005, and the Ministry for Education and Science, state assignment no. 13.5521.2017/BCh.

REFERENCES

  1. 1.
    Afanas’ev, V.N., Veselkin, V.Yu., Leont’ev, A.I., Skibin, A.P., and Chudnovskii, Ya.P., Hydrodynamics and heat transfer in a flow around a single depression on an initially smooth surface, Preprint of Bauman Moscow State Tech. Univ., Moscow, 1991, no. 2–91.Google Scholar
  2. 2.
    Burtsev, S.A., Kiselev, N.A., and Leont’ev, A.I., High Temp., 2014, vol. 52, no. 6, p. 895.CrossRefGoogle Scholar
  3. 3.
    Afanasyev, V.N., Chudnovsky, Ya.P., Leontiev, A.I., and Roganov, P.S., Exp. Therm. Fluid Sci., 1993, vol. 7, p. 1.CrossRefGoogle Scholar
  4. 4.
    Leontiev, A.I., Kiselev, N.A., Burtsev, S.A., Strongin, M.M., and Vinogradov, Y.A., Exp. Therm. Fluid Sci., 2016, vol. 79, p. 74.CrossRefGoogle Scholar
  5. 5.
    Afanas’ev, V.N. and Kon Dehai, Nauka Obraz., 2017, no. 4.  https://doi.org/10.7463/0417.0000932
  6. 6.
    Afanasiev, V.N. and Kong Dehai, J. Phys.: Conf. Ser., 2017, vol. 891, 012140.Google Scholar
  7. 7.
    Afanasiev, V.N., Trifonov, V.L., Getya, S.I., and Kong Dehai, Mashinostr. Kompyut. Technol., 2017, no. 10. http://www.technomagelpub.ru/jour/article/view/1312.Google Scholar
  8. 8.
    Fouladi, F., Henshaw, P., Ting, D.S.-K., and Ray, S., Int. J. Heat Mass Transfer, 2017, vol. 104, p. 1202.CrossRefGoogle Scholar
  9. 9.
    Larichkin, V.V. and Yakovenko, S.N., J. Appl. Mech. Tech. Phys., 2003, vol. 44, no. 3, p. 365.ADSCrossRefGoogle Scholar
  10. 10.
    Kalinin, E.K., Dreitser, G.A., and Yarkho, S.A., Intensifikatsiya teploobmena v kanalakh (Intensification of Heat Transfer in the Channels), Moscow: Mashinostroenie, 1990.Google Scholar
  11. 11.
    Teploobmen v dozvukovykh otryvnykh potokakh (Heat Transfer in Subsonic Tearing Streams), Terekhov, V.I., Ed., Novosibirsk: Novosibirsk. Gos. Tekh. Univ., 2016.Google Scholar
  12. 12.
    Terekhov, V.I., Yarygina, N.I., and Zhdanov, R.F., Int. J. Heat Mass Transfer, 2003, vol. 46, p. 4535.CrossRefGoogle Scholar
  13. 13.
    Smulsky, Ya.I., Terekhov, V.I., and Yarygina, N.I., Int. J. Heat Mass Transfer, 2012, vol. 55, p. 726.CrossRefGoogle Scholar
  14. 14.
    Wang, L. and Sunden, B., Heat Mass Transfer, 2007, vol. 43, p. 759.ADSCrossRefGoogle Scholar
  15. 15.
    Ligrani, P., Int. J. Rotating Mach., 2013, vol. 2013, no. 275653, p. 32.CrossRefGoogle Scholar
  16. 16.
    Ji, W.T., Jacobi, A.M., He, Y.L., and Tao, W.Q., Int. J. Heat Mass Transfer, 2015, vol. 88, p. 735.CrossRefGoogle Scholar
  17. 17.
    Molochnikov, V.M., Mikheev, N.I., Davletshin, I.A., and Paerelii, A.A., Izv. Ross. Akad. Nauk, Energ. 2008, no. 1, p. 137.Google Scholar
  18. 18.
    Nagano, Y., Hattori, H., and Houra, T., Int. J. Heat Fluid Flow, 2004, vol. 25, p. 393.CrossRefGoogle Scholar
  19. 19.
    Wang, L., Salewski, M., and Sunden, B., Exp. Therm. Fluid Sci., 2010, vol. 34, p. 165.CrossRefGoogle Scholar
  20. 20.
    Panigrahi, P.K., Schröder, A., and Kompenhan, J., Exp. Fluids, 2006, vol. 40, p. 277.CrossRefGoogle Scholar
  21. 21.
    Huang, J.J. and Liou, T.M., J. Turbomach., 1997, vol. 119, p. 617.CrossRefGoogle Scholar
  22. 22.
    Huang, J.J. and Liou, T.M., J. Heat Transfer, 1994, vol. 116, p. 912.CrossRefGoogle Scholar
  23. 23.
    Tariq, A., Panigrahi, P.K., and Muralidhar, K., Exp. Fluids, 2004, vol. 37, p. 701.CrossRefGoogle Scholar
  24. 24.
    Liou, T.M., Yang, C.P., and Lee, H.L., J. Heat Transfer, 1997, vol. 119, p. 383.Google Scholar
  25. 25.
    Tisa, J.P. and Huang, J.J., Int. J. Heat Mass Transfer, 1999, vol. 42, p. 2071.CrossRefGoogle Scholar
  26. 26.
    Liou, T.M. and Chen, S.H., Int. J. Heat Mass Transfer, 1998, vol. 41, p. 1795.CrossRefGoogle Scholar
  27. 27.
    Ahn, J. and Lee, J.S., Int. J. Heat Mass Transfer, 2010, vol. 53, p. 445.CrossRefGoogle Scholar
  28. 28.
    Terekhov, V.I. and Bogatko, T.V., Tepl. Protsessy Tekh., 2015, vol. 7, no. 2, p. 57.Google Scholar
  29. 29.
    Liu, H.C. and Wang, J.H., Int. J. Heat Mass Transfer, 2011, vol. 54, p. 575.CrossRefGoogle Scholar
  30. 30.
    Migai, V.K., Povyshenie effektivnosti teploobmennikov (Improving the Efficiency of Heat Exchangers), Leningrad: Energiya, 1980.Google Scholar
  31. 31.
    Belov, I.A., Isaev, S.A., and Korobkov, V.A., Zadachi i metody rascheta otryvnykh techenii neszhimaemoi zhidkosti (Problems and Methods for Calculating Separated Flows of Incompressible Fluid), Leningrad: Sudostroenie, 1989.Google Scholar
  32. 32.
    Isaev, S.A., Vatin, N.I., Guvernyuk, S.V., Gagarin, V.G., Basok, B.I., and Zhukova, Yu.V., High Temp., 2015, vol. 53, no. 6, p. 873.CrossRefGoogle Scholar
  33. 33.
    Afanas’ev, V.N. and Trifonov, V.L., Intensifikatsiya teplootdachi pri vynuzhdennoi konvektsii (Intensification of Heat Ttransfer during Forced Convection), Moscow: Mosk. Gos. Tekh. Univ. im. N. E. Baumana, 2007.Google Scholar
  34. 34.
    Jorgensen, F.E., How to Measure Tturbulence with Hot-Wire Anemometers: A Practical Guide, Skovlunde: Dantec Dynamics, 2002.Google Scholar
  35. 35.
    Moffat, R.J., Exp. Therm. Fluid Sci., 1988, vol. 1, p. 3.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. A. Isaev
    • 1
  • V. N. Afanasiev
    • 2
  • K. S. Egorov
    • 2
  • Dehai Kong
    • 2
    Email author
  1. 1.St. Petersburg State University of Civil AviationSt. PetersburgRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations