High Temperature

, Volume 57, Issue 3, pp 298–307 | Cite as

Mechanisms of the Formation of an Electric Arc of a Helical Shape in an External Axial Magnetic Field

  • R. M. UrusovEmail author
  • I. R. Urusova


A numerical simulation of an open direct-current arc in an external uniform axial magnetic field is performed. A circuit analog of fluctuations of the temperature of electrons is used for the numerical implementation of the open electric arc column of a helical shape. It randomly generates asymmetry in the temperature distribution of electrons and, consequently, other plasma characteristics. It is shown that the formation of the arc column of a helical shape is due to the asymmetric influence of the Ampere force, which shifts the cross sections of the arc relative to the central discharge axis. Furthermore, the cross sections of the arc rotate around the central axis at different speeds. The rotational speed at the initial part from the side of the cathode decreases downstream and increases upon approaching the anode. Such a character of the convective heat transfer causes the formation of a helical arc. If the direction of the external axial magnetic field coincides with the direction of the electric current, then the spatial orientation of the helical arc as a whole is right-handed. Otherwise, there is a left-handed structure of the arc column. The directions of rotation of the arc sections at the cathode and anode sides are opposite each other. A helical shape of the open arc is not constant in time and is periodically destroyed. Two modes of destruction were revealed: first, as a result of bridging the spiral of the helix and, second, as a result of the transformation of several spirals into one. Apparently, an open arc cannot maintain a stable and constant helical shape in an external axial magnetic field.



  1. 1.
    Finkelnburg, W. and Maecker, H., Elektrische Bogen ung thermisches Plasma, in Handbuch der Physik, Berlin: Springer, 1956, vol. 22.Google Scholar
  2. 2.
    Lebedev, A.D., Uryukov, B.A., Engel’sht, V.S., et al., Nizkotemperaturnaya plazma (Low-Temperature Plasma), vol. 7: Sil’notochnyi dugovoi razryad v magnitnom pole (High-Current Arc Discharge in a Magnetic Field), Novosibirsk: Nauka, 1992.Google Scholar
  3. 3.
    Cherednichenko, V.S., An’shakov, A.S., and Kuz’min, M.G., Plazmennye elektrotekhnologicheskie ustanovki (Plasma Electrotechnological Installations), Novosibirsk: Novosib. Gos. Tekh. Univ., 2005.Google Scholar
  4. 4.
    Maecker, H., Tr. Inst. Inzh. Electron. Radiotekh. 1971, vol. 59, no. 4, p. 4.Google Scholar
  5. 5.
    Mentel’, Yu., in Teoriya elektricheskoi dugi v usloviyakh vynuzhdennogo teploobmena (Theory of an Electric Arc under Conditions of Forced Heat Transfer), Novosibirsk: Nauka, 1977.Google Scholar
  6. 6.
    Novikov, O.Ya., Ustoichivost’ elektricheskoi dugi (Electric Arc Stability), Leningrad: Energiya, 1978.Google Scholar
  7. 7.
    Asinovskii, E.I., Kuz’min, A.K., and Pakhomov, E.P., Teplofiz. Vys. Temp., 1980, vol. 18, no. 1, p. 9.Google Scholar
  8. 8.
    Sinkevich, O.A., Dokl. Akad. Nauk SSSR, 1985, vol. 280, no. 1, p. 99.MathSciNetGoogle Scholar
  9. 9.
    Ganefel’d, R.V., High Temp., 2000, vol. 38, no. 3, p. 483.CrossRefGoogle Scholar
  10. 10.
    Nedospasov, A.V., Phys.—Usp., 1975, vol. 18, no. 8, p. 588.ADSCrossRefGoogle Scholar
  11. 11.
    Kadomtsev, B.B., in Voprosy teorii plazmy (Issues of Plasma Theory), Moscow: Gosatomizdat, 1963, p. 132.Google Scholar
  12. 12.
    Spong, D.A., Phys. Plasmas, 2015, vol. 22, 055 602.CrossRefGoogle Scholar
  13. 13.
    Hulsmann, H.G. and Mentel, J., Phys. Fluids, 1987, vol. 39, no. 7, p. 2274.ADSCrossRefGoogle Scholar
  14. 14.
    Ye Gong, Wenyan Lu, Jinyuan Liu, Xiaogang Wang, Shu Zheng, and Jiquan Gong, Phys. Plasmas, 2001, vol. 8, no. 8, p. 3833.ADSCrossRefGoogle Scholar
  15. 15.
    Sinkevich, O.A. and Blinova, V.A., in Mater. XXXVIII Mezhdunar. konf. po fizike plazmy i upravlyemomu termoyadernomy sintezu (Proc. XXXVIII Int. Conf. on Plasma Physics and Controlled Thermonuclear Fusion), Zvenigorod, 2011, p. 1.Google Scholar
  16. 16.
    Urusov, R.M. and Urusova, T.E., High Temp., 2017, vol. 55, no. 5, p. 643.CrossRefGoogle Scholar
  17. 17.
    Balanovskii, A.E., High Temp., 2018, vol. 56, no. 1, p. 1.CrossRefGoogle Scholar
  18. 18.
    Engel’sht, V.S., Gurovich, V.Ts., Desyatkov, G.A., et al., Nizkotemperaturnaya plazma (Low-Temperature Plasma), vol. 1: Teoriya stolba elektricheskoi dugi (Theory of the Electric Arc Pillar), Novosibirsk: Nauka, 1990.Google Scholar
  19. 19.
    Patankar, S., Numerical Heat Transfer and Fluid Flow, New York: McGraw Hill, 1980.zbMATHGoogle Scholar
  20. 20.
    Urusov, R.M. and Urusova, T.E., High Temp., 2004, vol. 42, no. 3, p. 373.CrossRefGoogle Scholar
  21. 21.
    Vasil’ev, K.V., Gazoelektricheskaya rezka metallov (Gas-Arc Cutting of Metals), Moscow: Mashgiz, 1963.Google Scholar
  22. 22.
    Sinkevich, O.A., in Proc. Int. Conf. MSS-9: Mode Conversation, Coherent Structures and Turbulence, Moscow, 2009, p. 294.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Physical–Technical Problems and Materials Science, National Academy of Sciences of Kyrgyz RepublicBishkekKyrgyzstan

Personalised recommendations