Advertisement

High Temperature

, Volume 57, Issue 2, pp 228–235 | Cite as

Extreme Focusing of Energy during Shock Compression of the Vapor Bubble in Hydrocarbon Liquids

  • R. I. Nigmatulin
  • A. A. Aganin
  • M. A. Il’gamov
  • D. Yu. ToporkovEmail author
HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • 4 Downloads

Abstract

In this paper, we compare the features of the shock compression of 1-mm vapor bubbles and the nonsphericity growth during their collapse in hydrocarbon (acetone, benzol, and tetradecane) liquids. At the beginning of compression, the vapor is in a saturation state at 1.03 MPa, and the bubble collapse is caused by a liquid pressure of 5 MPa. It has been found that, during the collapse of the bubble in acetone, only weak compression waves occur in its cavity, while intense, radially convergent compression waves that transform into shock waves arise in the bubbles in benzol and tetradecane, which have a significantly greater molecular weight and, consequently, a lower speed of sound in the vapor. This leads to an extreme focusing of energy at the bubble center. A shock wave in tetradecane appears shortly after the onset of collapse, whereas a shock wave in benzol forms only during the reconvergence of the unstressed compression wave to the center of the bubble after its reflections from the center and the interface. As a result, the highest values ​​of thermodynamic parameters are achieved in tetradecane, while the lowest values are attained in acetone. The bubble nonsphericity is shown to increase by two orders of magnitude less in tetradecane than in acetone and benzol by the time it reaches the extreme values ​​of the thermodynamic parameters.

Notes

FUNDING

This work was supported by the Russian Science Foundation, project no. 17-11-01135.

REFERENCES

  1. 1.
    Nigmatulin, R.I., Dinamika mnogofaznykh sred (Dynamics of Multiphase Media), 2 vols., Moscow: Nauka, 1987.Google Scholar
  2. 2.
    Taleyarkhan, R.P., West, C.D., Cho, J.S., Lahey, R.T., Jr., Nigmatulin, R.I., and Block, R.C., Science, 2002, vol. 295, p. 1868.ADSCrossRefGoogle Scholar
  3. 3.
    Taleyarkhan, R.P., West, C.D., Cho, J.S., Lahey, R.T., Jr., Nigmatulin, R.I., and Block, R.C., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2004, vol. 69, 036109.CrossRefGoogle Scholar
  4. 4.
    Taleyarkhan, R.P., West, C.D., Cho, J.S., Lahey, R.T., Jr., Nigmatulin, R.I., and Block, R.C., Phys. Rev. Lett., 2006, vol. 96, 034301.ADSCrossRefGoogle Scholar
  5. 5.
    Xu, Y. and Butt, A., Nucl. Eng. Des., 2005, vol. 235, p. 1317.CrossRefGoogle Scholar
  6. 6.
    Nigmatulin, R.I., Akhatov, I.Sh., Topolnikov, A.S., Bolotnova, R.Kh., Vakhitova, N.K., Lahey, R.T., Jr., and Taleyarkhan, R.P., Phys. Fluids, 2005, vol. 17, 107106.ADSCrossRefGoogle Scholar
  7. 7.
    Nigmatulin, R.I., Lahey, R.T., Jr., Taleyarkhan, R.P., West, C.D., and Block, R.C., Phys.—Usp., 2014, vol. 57, no. 9, p. 877.ADSCrossRefGoogle Scholar
  8. 8.
    Moss, W.C., Clarke, D.B., and Young, D.A., Science, 1997, vol. 276, p. 1398.CrossRefGoogle Scholar
  9. 9.
    Bass, A., Ruuth, S.J., Camara, C., Merriman, B., and Putterman, S., Phys. Rev. Lett., 2008, vol. 101, 234301.ADSCrossRefGoogle Scholar
  10. 10.
    Galimov, E.M., Kudin, A.M., Skorobogatskii, V.N., Plotnichenko, V.G., Bondarev, O.L., Zarubin, B.G., Strazdovskii, V.V., Aronin, A.S., Fisenko, A.V., Bykov, I.V., and Barinov, A.Yu., Dokl. Phys., 2004, vol. 49, no. 3, p. 150.ADSCrossRefGoogle Scholar
  11. 11.
    Nigmatulin, R.I., Aganin, A.A., Toporkov, D.Yu., and Il’gamov, M.A., Dokl. Phys., 2014, vol. 59, no. 9, p. 431.CrossRefGoogle Scholar
  12. 12.
    Nigmatulin, R.I., Aganin, A.A., Toporkov, D.Yu., and Il’gamov, M.A., Dokl. Phys., 2016, vol. 61, no. 3, p. 138.ADSCrossRefGoogle Scholar
  13. 13.
    Dnestrovskii, A.Yu., Voropaev, S.A., and Ponoma-reva, E.A., Dokl. Phys., 2011, vol. 56, no. 2, p. 78.ADSCrossRefGoogle Scholar
  14. 14.
    Dnestrovskii, A.Yu., Voropaev, S.A., and Zabrodina, E.A., Dokl. Phys., 2016, vol. 61, no. 8, p. 389.ADSCrossRefGoogle Scholar
  15. 15.
    Aganin, A.A., Il’gamov, M.A., and Toporkov, D.Yu., Uch. Zap. Kazan. Gos. Univ., Ser. Fiz.-Mat. Nauki, 2016, vol. 158, no. 2, p. 231.Google Scholar
  16. 16.
    Nigmatulin, R.I. and Bolotnova, R.Kh., Dokl. Phys., 2007, vol. 52, no. 8, p. 442.ADSCrossRefGoogle Scholar
  17. 17.
    Nigmatulin, R.I. and Bolotnova, R.Kh., High Temp., 2017, vol. 55, no. 2, p. 199.CrossRefGoogle Scholar
  18. 18.
    Aganin, A.A., Int. J. Numer. Methods Fluids, 2000, vol. 33, p. 157.ADSCrossRefGoogle Scholar
  19. 19.
    Godunov, S.K., Zabrodin, A.V., Ivanov, M.Ya., Kraiko, A.N., and Prokopov, G.P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki (Numerical Solution of Multidimensional Gas Dynamics Problems), Moscow: Nauka, 1976.Google Scholar
  20. 20.
    Moss, W.C., Clarke, D.B., White, J.W., and Young, D.A., Phys. Fluids, 1994, vol. 6, p. 2979.ADSCrossRefGoogle Scholar
  21. 21.
    Aganin, A.A., Nigmatulin, R.I., Il’gamov, M.A., and Akhatov, I.Sh., Dokl. Phys., 1999, vol. 44, no. 11, p. 734.ADSGoogle Scholar
  22. 22.
    Prosperetti, A., Q. Appl. Math., 1977, vol. 34, p. 339.CrossRefGoogle Scholar
  23. 23.
    Lin, H., Storey, B.D., and Szeri, A.J., J. Fluid Mech., 2002, vol. 452, p. 145.ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Toporkov, D.Yu., in Setochnye metody dlya kraevykh zadach i prilozheniya. Mater. X Mezhdunar. konf. (Grid Methods for Boundary Value Problems and Applications: Proc. X Int. Conf.), Kazan: Kazansk. Gos. Univ., 2014, p. 603.Google Scholar
  25. 25.
    Plesset, M.S. and Mitchell, T.P., Q. Appl. Math., 1956, vol. 13, p. 419.CrossRefGoogle Scholar
  26. 26.
    Kull, H.J., Phys. Rep., 1991, vol. 206, p. 197.ADSCrossRefGoogle Scholar
  27. 27.
    Aganin, A.A., Il’gamov, M.A., Nigmatulin, R.I., and Toporkov, D.Yu., Fluid Dyn., 2010, vol. 45, no. 1, p. 50.ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • R. I. Nigmatulin
    • 1
    • 2
  • A. A. Aganin
    • 1
    • 3
  • M. A. Il’gamov
    • 1
    • 3
  • D. Yu. Toporkov
    • 1
    Email author
  1. 1.Institute of Mechanics and Engineering, FRC Kazan Scientific Center, Russian Academy of SciencesKazanRussia
  2. 2.Shirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia
  3. 3.Mavlyutov Institute of Mechanics, Ufa Investigation Center, Russian Academy of SciencesUfaRussia

Personalised recommendations