Advertisement

High Temperature

, Volume 56, Issue 5, pp 811–820 | Cite as

Microwave Discharges in Liquids: Fields of Applications

  • Yu. A. Lebedev
REVIEWS
  • 12 Downloads

Abstract

The purpose of this review is to draw attention to the relatively new and poorly studied object of plasma physics, namely to the microwave discharges in liquids. Study of microwave discharges in liquids began only in early 2000-th and now they still remain one of the least studied plasma objects. Nevertheless, they are beginning to find application for solving various applied problems. This brief analytical review describes the results of studies on the use of such discharges in different applied areas: for water decontaminants, for generation of nanoparticles, for deposition of diamond coatings, for etching of photoresists, etc. Discharges can be created at pressure ranged from 0.1 kPa to atmospheric pressure at microwave powers from tens of watts to several kilowatts. Known data on the use of microwave discharges show their high efficiency in comparison with conventional discharges in the gas phase and in comparison with discharges of other types in liquids. Place of microwave discharges in liquids among other types of discharges is analyzed.

Notes

ACKNOWLEDGMENTS

This work was carried out within the State Program of TIPS RAS.

REFERENCES

  1. 1.
    Gaisin, F.M. and Son, E.E., Elektrofizicheskie processy v razryadah s tverdymi i zhidkimi ehlektrodami (Electrophysical Processes in Discharges with Solid and Liquid Electrodes), Sverdlovsk: Ural. Gos. Univ., 1989.Google Scholar
  2. 2.
    Samukawa, S., et al., J. Phys. D: Appl. Phys., 2012, vol. 45, 253001.ADSCrossRefGoogle Scholar
  3. 3.
    Bruggeman, P. and Leys, C., J. Phys. D: Appl. Phys., 2009, vol. 42, 053001.ADSCrossRefGoogle Scholar
  4. 4.
    Yang, Y., Cho, Y.I., and Fridman, A., Plasma Discharge in Liquid: Water Treatment and Application, Boca Raton, FL: CRC, 2012.Google Scholar
  5. 5.
    Bruggeman, P.J., et al., Plasma Sources Sci. Technol., 2016, vol. 25, 053002.ADSCrossRefGoogle Scholar
  6. 6.
    Lebedev, Yu.A., Plasma Phys. Rep., 2017, vol. 43, p. 676.ADSGoogle Scholar
  7. 7.
    Hattori, Y., Mukasa, S., Toyota, H., Yamashita, H., and Nomura, S., Surf. Coat. Technol., 2012, vol. 206, p. 2140.CrossRefGoogle Scholar
  8. 8.
    Mukasa, S., Nomura, S., and Toyota, H., Jpn. J. Appl. Phys., 2007, vol. 46, p. 6015.ADSCrossRefGoogle Scholar
  9. 9.
    Gidalevich, E. and Boxman, R.L., J. Phys. D: Appl. Phys., 2012, vol. 45, 245204.ADSCrossRefGoogle Scholar
  10. 10.
    Lebedev, Yu.A., Tatarinov, A.V., Epstein, I.L., and Averin, K.A., Plasma Chem. Plasma Process., 2016, vol. 36, p. 535.CrossRefGoogle Scholar
  11. 11.
    Tatarinov, A.V., Lebedev, Yu.A., and Epstein, I.L., High Energy Chem., 2016, vol. 50, p. 144.CrossRefGoogle Scholar
  12. 12.
    Levko, D., Sharma, A., and Raja, L.L., J. Phys. D: Appl. Phys., 2016, vol. 49, 285205.CrossRefGoogle Scholar
  13. 13.
    Nomura, S., Toyota, H., Tawara, M., Yamashota, H., and Matsumoto, K., Appl. Phys. Lett., 2006, vol. 88, 231502.ADSCrossRefGoogle Scholar
  14. 14.
    Nomura, S., Toyota, H., Mukasa, S., Yamashita, H., Maehara, T., and Kawashima, A., J. Appl. Phys., 2009, vol. 106, 073306.ADSCrossRefGoogle Scholar
  15. 15.
    Wang, B., Sun, B., Zhu, X., Yan, Z., Lui, Y., Lui, H., and Lui, Q., Hydrogen Energy, 2016, vol. 41, p. 7280.CrossRefGoogle Scholar
  16. 16.
    Sun, B., Zhao, X., Xin, Y., and Zhu, X., Int. J. Hydrogen Energy, 2017, vol. 42, no. 38, p. 24047. doi 10.1016/j.ijhydene.2017.08.052CrossRefGoogle Scholar
  17. 17.
    Bardos, L., Barankova, H., and Bardos, A., Plasma Chem. Plasma Process., 2017, vol. 37, p. 115.CrossRefGoogle Scholar
  18. 18.
    Barkhudarov, É.M., Kossyi, I.A., Misakyan, M., and Taktakishvili, I.M., in Microwave Discharges: Fundamentals and Applications, Proc. 8th Int. Workshop, Zvenigorod, Russia, Lebedev, Yu.A., Ed., Moscow: Yanus-K Moscow, 2012, p. 159.Google Scholar
  19. 19.
    Rahim, I., Nomura, S., Mukasa, S., and Toyota, H., Appl. Therm. Eng., 2015, vol. 90, p. 120.CrossRefGoogle Scholar
  20. 20.
    Nomura, S. and Toyota, H., Appl. Phys. Lett., 2003, vol. 83, p. 4503.ADSCrossRefGoogle Scholar
  21. 21.
    Nomura, S., Toyota, H., Mukasa, S., Yamashita, H., Maehara, T., and Kuramoto, M., Appl. Phys. Lett., 2006, vol. 88, 211503.ADSCrossRefGoogle Scholar
  22. 22.
    Nomura, S., Yamashita, H., Toyota, H., Mukasa, S., and Okamura, Y., in Proc. 19 Int. Symp. on Plasma Chemistry, 2009, Bochum, Germany, 2009. http://www.ispc-conference.org/ispcproc/papers/333.pdf.Google Scholar
  23. 23.
    Toyota, H., Nomura, S., Takahashi, Y., and Mukasa, S., Diamond Relat. Mater., 2008, vol. 17, p. 1902.ADSCrossRefGoogle Scholar
  24. 24.
    Bachmann, P.K., Leers, D., and Lydtin, H., Diamond Relat. Mater., 1991, vol. 1, p. 1.ADSCrossRefGoogle Scholar
  25. 25.
    Takahashi, Y., Toyota, H., Nomura, S., Mukasa, S., Inoue, T., and Okuda, S., Jpn. J. Appl. Phys., 2009, vol. 48, 031601.ADSCrossRefGoogle Scholar
  26. 26.
    Takahashi, Y., Toyota, H., Nomura, S., Mukasa, S., and Inoue, T., J. Appl. Phys., 2009, vol. 105, 113306.ADSCrossRefGoogle Scholar
  27. 27.
    Toyota, H., Nomura, S., Mukasa, S., Yamashita, H., Shimo, T., and Okuda, S., Diamond Relat. Mater., 2011, vol. 20, p. 1255.ADSCrossRefGoogle Scholar
  28. 28.
    Gautama, P., Toyota, H., Iwamoto, Y., Zhu, X., Nomura, S., and Mukasa, S., Precis. Eng., 2017, vol. 49, p. 412.CrossRefGoogle Scholar
  29. 29.
    Lebedev, Yu.A., Epstein, I.L., Shakhatov, V.A., Yusupova, E.V., and Konstantinov, V.S., High Temp., 2014, vol. 52, p. 319.CrossRefGoogle Scholar
  30. 30.
    Lebedev, Yu.A., Konstantinov, V.S., Yablokov, M.Yu., Shchegolikhin, A.N., and Surin, N.M., High Energy Chem., 2014, vol. 48, p. 385.CrossRefGoogle Scholar
  31. 31.
    Averin, K.A., Lebedev, Yu.A., Shchegolikhin, A.N., and Yablokov, M.Yu., Plasma Processes Polym., 2017, vol. 14, no. 9. http://dx.doi.org/10.1002/ppap.20160022.Google Scholar
  32. 32.
    Lebedev, Yu.A., Averin, K.A., Tatarinov, A.V., and Epstein, I.L., EPJ Web Conf., 2017, vol. 149, p. 02002.Google Scholar
  33. 33.
    Buravtsev, N.N., Konstantinov, V.S, Lebedev, Yu.A., and Mavlyudov, T.B., in Microwave Discharges: Fundamentals and Applications, Proc. 8th Int. Workshop, Zvenigorod, Russia, Lebedev, Yu.A., Ed., Moscow: Yanus-K Moscow, 2012, p.167.Google Scholar
  34. 34.
    Averin, K.A., Lebedev, Yu., A. and Shakhatov, V.A., Prikl. Fiz., 2016, no. 2, p. 31.Google Scholar
  35. 35.
    Lebedev, Yu.A., Tatarinov, A.V., and Epstein, I.L., Plasma Phys. Rep., 2017, vol. 43, p. 510.ADSCrossRefGoogle Scholar
  36. 36.
    Hattory, Y., Mukasa, S., Toyota, H., Inoue, T., and Nomura, S., Mater. Lett., 2011, vol. 65, p. 188.CrossRefGoogle Scholar
  37. 37.
    Hattori, Y., Mukasa, S., Nomura, S., and Toyota, H., J. Appl. Phys., 2010, vol. 107, 063305.ADSCrossRefGoogle Scholar
  38. 38.
    Hattori, Y., Mukasa, S., Toyota, H., Inoue, T., and Nomura, S., Mater. Chem. Phys., 2011, vol. 131, p. 425.CrossRefGoogle Scholar
  39. 39.
    Hattori, Y., Nomura, S., Mukasa, S., Toyota, H., Inoue, T., and Kasahara, T., J. Alloys Compd., 2013, vol. 560 p, p. 105.Google Scholar
  40. 40.
    Sato, S., Mori, K., Ariyada, O., Atsushi, H., and Yonezawa, T., Surf. Coat. Technol., 2011, vol. 206, p. 955.CrossRefGoogle Scholar
  41. 41.
    Lebedev, Yu.A., Khadzhiev, S.N., Kadiev, Kh.M., Averin, K.A., Visaliev, M.Ya., and Mokochunina, T.V., RF Patent 2631427, 2017.Google Scholar
  42. 42.
    Averin, K.A. and Lebedev, Yu., Abstracts of Papers, XLIV Int. Zvenigorod Conf. on Plasma Physics and Controlled Fusion, Moscow, PLASMAIOFAN, 2017, p.195.Google Scholar
  43. 43.
    Skorobogatov, G.A., Krylov, A.A., Moskvin, A.L., Povarov, V.G., Tret’yachenko, S.A., and Khripun, V.K., High Energy Chem., 2016, vol. 50, p. 406.CrossRefGoogle Scholar
  44. 44.
    Ishijima, T., Hotta, H., and Sugai, H., Appl. Phys. Lett., 2007, vol. 91, 121501.ADSCrossRefGoogle Scholar
  45. 45.
    Ishijima, T., Sugiura, H., Saito, R., Toyoda, H., and Sugai, H., Plasma Sources Sci. Technol., 2010, vol. 19, 015010.ADSCrossRefGoogle Scholar
  46. 46.
    Wang, B., Sun, B., Zhu, X., Yan, Z., Liu, Y., and Liu, H., Contrib. Plasma Phys., 2013, vol. 53, p. 697.ADSCrossRefGoogle Scholar
  47. 47.
    Ishijima, T., Saito, R., Sugiura, H., and Toyoda, H., in Pro. 19th Int. Symp. on Plasma Chemistry, Bochum, Germany, 2009. http://www.ispc-conference.org/ ispcproc/papers/680.pdf.Google Scholar
  48. 48.
    Ishijima, T., Nosaka, K., Tanaka, Y., Uesugi, Y., Goto, Y., and Horibe, H., Appl. Phys. Lett., 2013, vol. 103, 142101.ADSCrossRefGoogle Scholar
  49. 49.
    Gedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L., and Rousell, J., Tetrahedron Lett., 1986, vol. 27, p. 279.CrossRefGoogle Scholar
  50. 50.
    Rakhmankulov, D.L., Bikbulatov, I.H., Shulaev, N.S., and Shavshukova, S.Yu., Mikrovolnovoe izluchenie i intensifikaciya himicheskih processov (Microwave Radiation and Intensification of Chemical Processes), Moscow: Khimiya, 2003.Google Scholar
  51. 51.
    Tsukahara, Y., Higashi, A., Yamauchi, T., Nakamura, T., Yasuda, M., Baba, A., and Wada, Y., J. Phys. Chem. C, 2010, vol. 114, no. 19, p. 8965.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Topchiev Institute of Petrochemical Synthesis, Rusian Academy of SciencesMoscowRussia

Personalised recommendations