Advertisement

High Temperature

, Volume 56, Issue 5, pp 678–684 | Cite as

Measuring the Specific Heat of Conducting Substances in Conditions of Microsecond Heating with a Current Pulse

  • S. V. Onufriev
  • A. I. Savvatimskiy
THERMOPHYSICAL PROPERTIES OF MATERIALS
  • 5 Downloads

Abstract

A technique for measuring the specific heat of conducting substances (metals, zirconium carbide and nitride, and graphite) in conditions of pulsed heating with a microsecond current pulse at a constant and increasing pressure is considered. The reliability of the detection of a steep increase in specific heat before melting, which is presumably associated with the emergence of Frenkel defects, is shown. An estimate of the errors in the measurements of the specific heat is given.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 14-22-00273-P.

REFERENCES

  1. 1.
    Lebedev, S.V. and Khaikin, S.E., Zh. Eksp. Teor. Fiz., 1954, vol. 26, no. 6, p. 723.Google Scholar
  2. 2.
    Lebedev, S.V. and Savvatimskii, A.I., Sov. Phys. Usp., 1984, vol. 144, p. 215.Google Scholar
  3. 3.
    Lebedev, S.V., Zh. Eksp. Teor. Fiz., 1957, vol. 32, no. 2, p. 199.Google Scholar
  4. 4.
    Frenkel’, Ya.I., Vvedenie v teoriyu metallov (Introduction to the Theory of Metals), Leningrad: Nauka, 1972.Google Scholar
  5. 5.
    Frenkel’, Ya.I., Kineticheskaya teoriya zhidkostei (Kinetic Theory of Liquids), Leningrad: Nauka, 1975.Google Scholar
  6. 6.
    Ubbelohde, A.R., Melting and Crystal Structure, Oxford: Oxford Univ. Press, 1965.Google Scholar
  7. 7.
    Pakhomov, E.P., High Temp., 2014, vol. 52, no. 4, p. 606.CrossRefGoogle Scholar
  8. 8.
    Savvatimskii, A.I. and Korobenko, V.N., Vysokotemperaturnye svoistva metallov atomnoi energetiki (tsirkonii, gafnii i zhelezo pri plavlenii i v zhidkom sostoyanii) (High-Temperature Properties of Atomic Energy Metals (Zirconium, Hafnium, and Iron in Melting and Li-quid State)), Moscow: Mosk. Energ. Inst., 2012.Google Scholar
  9. 9.
    Savvatimskii, A.I., Plavlenie grafita i svoistva zhidkogo ugleroda (Melting of Graphite and Properties of Liquid Carbon), Moscow: Fizmatkniga, 2014.Google Scholar
  10. 10.
    Onufriev, S.V. and Savvatimskiy, A.I., High Temp., 2016, vol. 54, no. 4, p. 510.CrossRefGoogle Scholar
  11. 11.
    Savvatimskiy, A.I., Onufriev, S.V., and Kondratyev, A.M., Carbon, 2016, vol. 98, p. 534.CrossRefGoogle Scholar
  12. 12.
    Savvatimskiy, A.I., Onufriev, S.V., Muboyadzhyan, S.A., Seredkin, N.N., and Konyukhov, S.A., High Temp., 2017, vol. 55, no. 5, p. 825.CrossRefGoogle Scholar
  13. 13.
    Kondratyev, A., Muboyajan, S., Onufriev, S., and Savvatimskiy, A., J. Alloys Compd., 2015, vol. 631, p. 52.CrossRefGoogle Scholar
  14. 14.
    Savvatimskiy, A.I., Onufriev, S.V., and Muboyad-zhyan, S.A., J. Mater. Res., 2017, vol. 32, no. 7, p. 1287.ADSCrossRefGoogle Scholar
  15. 15.
    Onufriev, S.V., Kondratiev, A.M., Savvatimskiy, A.I., Val’yano, G.E., and Muboyajan, S.A., High Temp., 2015, vol. 53, no. 3, p. 455.CrossRefGoogle Scholar
  16. 16.
    Onufriev, S.V., Savvatimskiy, A.I., and Kondratyev, A.M., High Temp.—High Pressures, 2014, vol. 43, nos 2-3, p. 217.Google Scholar
  17. 17.
    Lebedev, S.V., Teplofiz. Vys. Temp., 1980, vol. 18, no. 2, p. 273.Google Scholar
  18. 18.
    Mesyats, G.A. and Proskurovskii, D.I., Impul’snyi elektricheskii razryad v vakuume (Pulsed Electric Discharge in Vacuum), Novosibirsk: Nauka, 1984.Google Scholar
  19. 19.
    Mesyats, G.A., JETP Lett., 2007, vol. 85, no. 2, p. 109.ADSCrossRefGoogle Scholar
  20. 20.
    Bodryakov, V.Yu., High Temp., 2016, vol. 54, no. 3, p. 316.CrossRefGoogle Scholar
  21. 21.
    Boivineau, M. and Pottlacher, G., Int. J. Mater. Prod. Technol., 2006, vol. 26, nos. 3–4, p. 217.CrossRefGoogle Scholar
  22. 22.
    Pottlacher, G., High Temperature Thermophysical Properties of 22 Pure Metals, Graz: Keiper, 2010.Google Scholar
  23. 23.
    Savvatimskiy, A.I., Carbon at High Temperatures, Ser.: Materials Science, Springer, 2015, vol. 134.CrossRefGoogle Scholar
  24. 24.
    Savvatimskii, A.I. and Onufriev, S.V., Phys. Atom. Nucl., 2016, vol. 79, no 14, p. 1637.Google Scholar
  25. 25.
    Rakhel’, A.D., Energiya (Tekhnol., Tekh., Ekol.), 2017, no. 1, p. 26.Google Scholar
  26. 26.
    Onufriev, S.V., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 4, p. 372.CrossRefGoogle Scholar
  27. 27.
    Guillermet, A.F., J. Alloys Compd., 1995, vol. 217, p. 69.CrossRefGoogle Scholar
  28. 28.
    Hugosson, H.W., Jansson, U., Johansson, B., and Eriksson, O., Chem. Phys. Lett., 2001, vol. 333, p. 444.ADSCrossRefGoogle Scholar
  29. 29.
    Novikova, S.I., Teplovoe rasshirenie tverdykh tel (Thermal Expansion of Solids), Moscow: Nauka, 1974.Google Scholar
  30. 30.
    Bazarov, I.P., Termodinamika (Therodynamics), Moscow: Vysshaya Shkola, 1976.Google Scholar
  31. 31.
    Shpil’rain, E.E. and Kessel’man, P.M., Osnovy teorii teplofizicheskikh svoistv veshchestv (Fundamentals of the Theory of Thermophysical Properties of Substances), Moscow: Energiya, 1977.Google Scholar
  32. 32.
    Wanderlich, B. and Baur, H., Heat capacities of linear high polymers, in Advances in Polymer Science, Heidelberg: Springer, 1970, vol. 7, p. 151.Google Scholar
  33. 33.
    Kotel’nikov, R.B., Bashlykov, S.N., Galiakbarov, Z.G., and Kashtanov, A.I., Osobo tugoplavkie elementy i soedineniya (Particularly Refractory Elements and Compounds), Moscow: Metallurgiya, 1968.Google Scholar
  34. 34.
    Fizicheskie velichiny. Spravocnik (Physical Quantities: A Handbook), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.Google Scholar
  35. 35.
    MI (Recommendations) 2083-90 GSI: Indirect Measurements. Determination of Measurement Results and Estimation of Their Errors, Moscow: Izd. Standartov, 1991.Google Scholar
  36. 36.
    Afanas’ev, V.N., Afonin, A.A., Isaev, S.I., et al., Laboratornyi praktikum po termodinamike i teploperedache (Laboratory Practical Works on Thermodynamics and Heat Transfer), Krutov, V.I. and Shishov, E.V., Eds., Moscow: Vysshaya Shkola, 1988.Google Scholar
  37. 37.
    GOST (State Standard) 8.381-2009: State System for Ensuring the Uniformity of Measurements. Standards. Ways for Expressing the Accuracy, Moscow: Standartinform, 2012.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia
  2. 2.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations