Advertisement

High Temperature

, Volume 56, Issue 5, pp 652–661 | Cite as

Thermodynamic Properties of Condensed Uranium Dioxide

  • N. M. Aristova
  • G. V. Belov
  • I. V. Morozov
  • M. A. Sineva
THERMOPHYSICAL PROPERTIES OF MATERIALS
  • 10 Downloads

Abstract

In the context of the development of the IVTANTHERMO information and reference system, heat capacity equations have been derived for solid and liquid stoichiometric uranium dioxide in the temperature ranges of 298.15–3130 K and 3130–8000 K, respectively, on the basis of an analysis of experimental data available in the literature. The appearance of new experimental data on the UO2 enthalpy and heat capacity up to 8000 K made it necessary to recalculate the temperature dependences of the heat capacity. The refined values of thermodynamic functions (heat capacities, entropy, enthalpy increments, and the reduced Gibbs energy) obtained by numerical integration of these equations in a range of 100–8000 K have been entered into the IVTANTHERMO database.

Notes

ACKNOWLEDGMENTS

We thank M.A. Sheindlin, S.V. Starikov, A.V. Lunev, and M.A. Korneva for our fruitful discussions. We are particularly grateful to I.L. Iosilevskii for helpful remarks and advice.

This work was supported by the Russian Science Foundation (grant no. 14-50-00124).

REFERENCES

  1. 1.
    Gurvich, L.V., Bergman, G.A., Veits, I.V., et al., Termodinamicheskie svoistva individual’nykh veshchestv. Spravochnoe izdanie (Thermodynamic Properties of Individual Substances: A Reference Book), 4 vols., Glushko, V.P., Ed., Moscow: Nauka, 1982, vol. 4.Google Scholar
  2. 2.
    Harding, J.H., Masri, P., and Stoneham, A.M., J. Nucl. Mater., 1980, vol. 92, p. 73.ADSCrossRefGoogle Scholar
  3. 3.
    MacInnes D.A. and Catlow, C.R.A., J. Nucl. Mater., 1980, vol. 89, p. 354.ADSCrossRefGoogle Scholar
  4. 4.
    Browning, P., J. Nucl. Mater., 1981, vol. 98, p. 345.ADSCrossRefGoogle Scholar
  5. 5.
    Casado, J.M., Harding, J.H., and Hyland, G.J., J. Phys.: Condens. Matter, 1994, vol. 6, p. 4685.ADSGoogle Scholar
  6. 6.
    Devresse, J.T., Polarons, in Encyclopedia of Applied Physics, Trigg, G.L, Ed., Weinheim: Wiley, 1996, vol. 14, p. 383.Google Scholar
  7. 7.
    Ruello, P., Becker, K.D., Ullrich, K., Desgranges, L., Petot, C., and Petot-Ervas, G., J. Nucl. Mater., 2004, vol. 328, p. 46.ADSCrossRefGoogle Scholar
  8. 8.
    Pavlov, T., Wenman, M.R., Vlahovic, L., Robba, D., Konings, R.J.M., Van Uffelen, P., and Grimes, R.W., Acta Mater., 2017, vol. 139, p. 138.CrossRefGoogle Scholar
  9. 9.
    Szwarc, R., J. Phys. Chem. Solids, 1969, vol. 30, p. 705.ADSCrossRefGoogle Scholar
  10. 10.
    Hutchings, M.T., Clausen, K., Dickens, M.H., Hayes, W., Kjems, J.K., Schnabel, P.G., and Smith, C., J. Phys. C: Solid State Phys., 1984, vol. 17, p. 3903.ADSCrossRefGoogle Scholar
  11. 11.
    Hutchings, M.T., J. Chem. Soc., Faraday Trans. 2, 1987, vol. 83, p. 1083.CrossRefGoogle Scholar
  12. 12.
    Ronchi, C. and Hyland, G.J., J. Alloys Compd., 1994, vols. 213–214, p. 159.CrossRefGoogle Scholar
  13. 13.
    Rand, M.H., Ackermann, R.J., Gronvold, F., Oetting, F.L., and Pattoret, A., Int. Rev. Hautes Temp. Refract, 1978, vol. 15, p. 355.Google Scholar
  14. 14.
    Ralph, J. and Hyland, G.J., J. Nucl. Mater., 1985, vol. 132, p. 76.ADSCrossRefGoogle Scholar
  15. 15.
    Hyland, G.J. and Ohse, R.W., J. Nucl. Mater., 1986, vol. 140, p. 149.ADSCrossRefGoogle Scholar
  16. 16.
    Matveev, L.V. and Veshchunov, M.S., JETP, 1997, vol. 84, no. 2, p. 122.CrossRefGoogle Scholar
  17. 17.
    Lunev, A.V. and Tarasov, B.A., J. Nucl. Mater., 2011, vol. 415, p. 217.ADSCrossRefGoogle Scholar
  18. 18.
    Korneva, M.A. and Starikov, S.V., Phys. Solid State, 2016, vol. 58, no. 1, p. 177.ADSCrossRefGoogle Scholar
  19. 19.
    Dworkin, A.S. and Bredig, M.A., J. Phys. Chem., 1968, vol. 72, no. 4, p. 1277.CrossRefGoogle Scholar
  20. 20.
    Final Reports INTAS-93-66: Construction of the Equation of State of Uranium Dioxide up to the Critical Point, Ronchi, C. and Fortov, V., Eds., Karlsruhe: European Commission, JRC-ITU, 1997–1999.Google Scholar
  21. 21.
    Iosilevski, I.L., Hyland, G.J., Ronchi, C., and Yakub, E.S., Trans. Am. Nucl. Soc., 1999, vol. 81, p. 122.Google Scholar
  22. 22.
    Iosilevski, I.L., Hyland, G.J., Yakub, E.S., and Ronchi, C., Int. J. Thermophys., 2001, vol. 22, p. 1253.CrossRefGoogle Scholar
  23. 23.
    Ronchi, C., Iosilevskiy, I., and Yakub, E., Equation of State of Uranium Dioxide, Berlin: Springer, 2004.CrossRefGoogle Scholar
  24. 24.
    Iosilevskii, I.L., Gryaznov, V.K., Semenov, A.M., Yakub, E.C., Gorokhov, L.N., Yungman V.S., Basharin A.Yu., Brykin M.V., Sheindlin M.A., Fortov, V.E., Ronchi, C., Hyland, G.J., and Pflieger, R., Izv. Ross. Akad. Nauk, Energ., 2011, no. 5, p. 115.Google Scholar
  25. 25.
    Yakub, E., Ronchi, C., and Iosilevskiy, I., J. Phys.: Condens. Matter, 2006, vol. 18, p. 1227.ADSGoogle Scholar
  26. 26.
    Hiernaut, J.P., Hyland, G.J., and Ronchi, C., Int. J. Thermophys., 1993, vol. 14, no. 2, p. 259.ADSCrossRefGoogle Scholar
  27. 27.
    Ronchi, C., Hiernaut, J.P., Selfslag, R., and Hyland, G.J., Nucl. Sci. Eng., 1993, vol. 113, p. 1.CrossRefGoogle Scholar
  28. 28.
    Bredig, M.A., L’etudes des transformations crystalline a haute temperature, in Proc. Conf. held in Odeillo, France, 1971, Paris: Centre Natl. Rech. Sci., 1972.Google Scholar
  29. 29.
    Ronchi, C., Sheindlin, M., Musella, M., and Hyland, G.J., J. Appl. Phys., 1999, vol. 85, p. 776.ADSCrossRefGoogle Scholar
  30. 30.
    Fink, J.K., J. Nucl. Mater., 2000, vol. 279, p. 1.ADSCrossRefGoogle Scholar
  31. 31.
    Konings, R.J.M., Benes, O., Kovacs, A., Manara, D., Sedmidubsky, D., Gorokhov, L., Iorish, V., Yungman, V., Shenyavskaya, E., and Osina, E., J. Phys. Chem. Ref. Data, 2014, vol. 43, no. 1, 013101.ADSCrossRefGoogle Scholar
  32. 32.
    Idiri, M., Le Bihan, T., Heathman, S., and Rebizant, J., Phys. Rev. B: Condens. Matter Mater. Phys., 2004, vol. 70, 014113.ADSCrossRefGoogle Scholar
  33. 33.
    Jones, W.M., Gordon, J., and Long, E.A., J. Chem. Soc., 1952, vol. 20, p. 695.ADSGoogle Scholar
  34. 34.
    Hunzicker, J.J. and Westrum, E.F., J. Chem. Thermodyn., 1971, vol. 3, p. 61.CrossRefGoogle Scholar
  35. 35.
    Khattak, G.D., Phys. Status Solidi A, 1983, vol. 75, p. 317.ADSCrossRefGoogle Scholar
  36. 36.
    Santini, P., Carretta, S., Amoretti, G., Caciuffo, R., Magnani, N., and Lander, G.H., Rev. Mod. Phys., 2009, vol. 81, p. 807.ADSCrossRefGoogle Scholar
  37. 37.
    Moore, G.E. and Kelley, K.K., J. Am. Chem. Soc., 1947, vol. 69, p. 2105.CrossRefGoogle Scholar
  38. 38.
    Conway, J.B. and Hein, R.A., J. Nucl. Mater., 1965, vol. 15, p. 149.Google Scholar
  39. 39.
    Ogard, A.E. and Leary, J.A., in Proc. Thermodynamics of Nuclear Materials, Vienna, 1967, Vienna: Int. At. Energy Agency, 1968, p. 651.Google Scholar
  40. 40.
    Hein, R.A., Flagella, P.N., and Conway, J.B., J. Am. Ceram. Soc., 1968, vol. 51, no. 5, p. 291.CrossRefGoogle Scholar
  41. 41.
    Hein, R.A., Sjodahl, L.A., and Szwarc, R., J. Nucl. Mater., 1968, vol. 25, p. 99.ADSCrossRefGoogle Scholar
  42. 42.
    Leibowitz, L., Mishler, L.W., and Chasanov, M.G., J. Nucl. Mater., 1969, vol. 29, p. 356.ADSCrossRefGoogle Scholar
  43. 43.
    Engel, T.K., J. Nucl. Mater., 1969, vol. 31, p. 211.ADSCrossRefGoogle Scholar
  44. 44.
    Frederickson, D.R. and Chasanov, M.G., J. Chem. Thermodyn., 1970, vol. 2, p. 263.Google Scholar
  45. 45.
    Takahashi, Y. and Asou, M., J. Nucl. Mater., 1993, vol. 201, p. 108.ADSCrossRefGoogle Scholar
  46. 46.
    Popov, M.M., Gal’chenko, G.L., and Senin, M.D., Zh. Neorg. Khim., 1958, vol. 3, no. 8, p. 1734.Google Scholar
  47. 47.
    Grønvold, F., Kveseth, M.H., Sveen, A., and Tichy, J., J. Chem. Thermodyn., 1970, vol. 2, p. 665.CrossRefGoogle Scholar
  48. 48.
    Matzke, Hj., Lucuta, P.G., Verrall, R.A., and Henderson, J., J. Nucl. Mater., 1997, vol. 247, p. 121.ADSCrossRefGoogle Scholar
  49. 49.
    Amaya, M., Une, K., and Hirai, M., J. Nucl. Sci. Technol., 2004, vol. 41, no. 2, p. 108.CrossRefGoogle Scholar
  50. 50.
    Shomate, C.H., J. Phys. Chem., 1954, vol. 58, p. 368.CrossRefGoogle Scholar
  51. 51.
    Aristova, N.M. and Belov, G.V., Russ. J. Phys. Chem. A, 2015, vol. 89, no. 6, p. 974.CrossRefGoogle Scholar
  52. 52.
    Aristova, N.M. and Belov, G.V., Russ. J. Phys. Chem. A, 2015, vol. 89, no. 7, p. 1127.CrossRefGoogle Scholar
  53. 53.
    Aristova, N.M. and Belov, G.V., Russ. J. Phys. Chem. A, 2016, vol. 90, no. 3, p. 700.CrossRefGoogle Scholar
  54. 54.
    Affortit, C., High Temp.—High Pressure, 1969, vol. 1, no. 1, p. 27.Google Scholar
  55. 55.
    Affortit, C. and Marcon, J.P., Rev. Int. Hautes Temp. Refract., 1970, vol. 7, no. 3, p. 236.Google Scholar
  56. 56.
    Inaba, H., Naito, K., and Oguma, M., J. Nucl. Mater., 1987, vol. 149, p. 341.ADSCrossRefGoogle Scholar
  57. 57.
    Banerjee, J., Parida, S.C., Kutty, T.R.G., Kumar, A., and Banerjee, S., J. Nucl. Mater., 2012, vol. 427, p. 69.ADSCrossRefGoogle Scholar
  58. 58.
    Kavazauri, R., Pokrovskiy, S.A., Baranov, V.G., and Tenishev, A.V., IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 130, 012025.Google Scholar
  59. 59.
    Mills, K.C., Ponsford, F.H., Richardson, M.J., Zaghini, N., and Fassina, P., Thermochim. Acta, 1989, vol. 139, p. 107.CrossRefGoogle Scholar
  60. 60.
    Manara, D., Ronchi, C., Sheindlin, M., and Konings, R., J. Nucl. Mater., 2007, vol. 362, p. 14.ADSCrossRefGoogle Scholar
  61. 61.
    Latta, R.E. and Fryxell, R.E., J. Nucl. Mater., 1970, vol. 35, p. 195.ADSCrossRefGoogle Scholar
  62. 62.
    Tachibana, T., Ohmori, T., Yamanouchi, S., and Itaki, T., J. Nucl. Sci. Technol., 1985, vol. 22, p. 155.CrossRefGoogle Scholar
  63. 63.
    Ronchi, C. and Sheindlin, M., Int. J. Thermophys., 2002, vol. 23, p. 293.CrossRefGoogle Scholar
  64. 64.
    Manara, D., Ronchi, C., and Sheindlin, M., High Temp.—High Pressure, 2003, vols. 35–36, p. 25.CrossRefGoogle Scholar
  65. 65.
    Kato, M., Morimoto, K., Sugata, H., Konashi, K., Kashimura, M., and Abe, T., J. Nucl. Mater., 2008, vol. 373, p. 237.ADSCrossRefGoogle Scholar
  66. 66.
    Kato, M., Morimoto, K., Sugata, H., Konashi, K., Kashimura, M., and Abe, T., J. Alloys Compd., 2008, vol. 452, p. 48.CrossRefGoogle Scholar
  67. 67.
    Manara, D., Melting transition measurements in uranium dioxide, Ph.D. Thesis, Coventry: Univ. Warwick, 2004. http://go.warwick.ac.uk/wrap/66996.Google Scholar
  68. 68.
    Manara, D., Ronchi, C., Sheindlin, M., Lewis, M., and Brykin, M., J. Nucl. Mater., 2005, vol. 342, p. 148.ADSCrossRefGoogle Scholar
  69. 69.
    Baichi, M., Chatillon, C., Ducros, G., and Froment, K., J. Nucl. Mater., 2006, vol. 349, p. 57.ADSCrossRefGoogle Scholar
  70. 70.
    Lambertson, W.A., Mueller, M.H., and Gunzel, F.H., J. Am. Ceram. Soc., 1953, vol. 36, no. 12, p. 397.CrossRefGoogle Scholar
  71. 71.
    Hein, R.A. and Flagella, P.N., Enthalpy Measurements of Uranium Dioxide and Tungsten to 3260 K, Nuclear Materials and Propulsion Oper. GEMP-578, General Electric, 1968.Google Scholar
  72. 72.
    Leibowitz, L., Chasanov, M.G., Mishler, L.W., and Fischer, D.F., J. Nucl. Mater., 1971, vol. 39, p. 115.ADSCrossRefGoogle Scholar
  73. 73.
    Baichi, M., Chatillon, C., Ducros, G., and Froment, K., J. Nucl. Mater., 2006, vol. 349, p. 17.ADSCrossRefGoogle Scholar
  74. 74.
    Huber, E.J. and Holley, C.E., J. Chem. Thermodyn., 1969, vol. 1, p. 267.CrossRefGoogle Scholar
  75. 75.
    Huber, EJ., Holley, C.E., and Meierkord, E.H., J. Am. Chem. Soc., 1952, vol. 74, p. 3406.CrossRefGoogle Scholar
  76. 76.
    Pudjanto, B.A., J. Tek. Bhn. Nukl., 2005, vol. 1, no. 1, p. 1.Google Scholar
  77. 77.
    Ronchi, C., J. Phys.: Condens. Matter, 1994, vol. 6, p. L561.ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • N. M. Aristova
    • 1
  • G. V. Belov
    • 1
  • I. V. Morozov
    • 1
  • M. A. Sineva
    • 1
  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia

Personalised recommendations