Advertisement

High Energy Chemistry

, Volume 53, Issue 1, pp 82–86 | Cite as

Water Activated by Air Spark Plasma Radiation

  • I. M. PiskarevEmail author
PLASMA CHEMISTRY
  • 3 Downloads

Abstract

The concentration of oxidative equivalents, formed in a 5-mL sample of water by the action of radiation from spark discharge plasma and products diffusing from the discharge region to the sample surface, has been investigated. Immediately after treatment for 3 min, the concentration of oxidative equivalents is 22.4 ± 2.5 (mmol eq)/L, decreasing to zero in 14 days. The redox potential of the treated water is 553 ± 5 mV. On the fourth to ninth day, the potential increases to 630 ± 10 mV. The acidity of water is pH 2.4–2.6. The energy expenditure for activating water by plasma radiation is less than that for activating by the plasma.

Keywords:

plasma radiation water oxidative activity redox potential 

Notes

REFERENCES

  1. 1.
    Bruggeman, P.J., Kushner, M.J., Locke, B.R., et al., Plasma Sources Sci. Technol., 2016, vol. 25, p. 053002.CrossRefGoogle Scholar
  2. 2.
    Thirumdas, R., Kothakota, A., Annapure, U., Siliveru, K., Blundell, R., Gatt, R., and Valdramidis, V.P., Trends Food Sci. Technol., 2018, vol. 77, p. 21.CrossRefGoogle Scholar
  3. 3.
    Lukes, P., Clupek, M., Babicky, V., and Sunka, P., Plasma Sources Sci. Technol., 2008, vol. 17, no. 11, p. 024012.CrossRefGoogle Scholar
  4. 4.
    Brisset, J.-L. and Pawlat, L., Plasma Chem. Plasma Process., 2016, vol. 36, no. 2, p. 355.CrossRefGoogle Scholar
  5. 5.
    Schnabel, U., Niquet, R., Schmidt, C., Stachowiak, J., Schluter, O., Andrasch, M., and Ehlbeck, J., Int. J. Environ. Agricult. Res., 2016, vol. 2, p. 212.Google Scholar
  6. 6.
    Piskarev, I.M., Astaf’eva, K.A., and Ivanova, I.P., Biophysics (Moscow), 2017, vol. 62, no. 4, p. 547.CrossRefGoogle Scholar
  7. 7.
    Piskarev, I.M., Astaf’eva, K.A., and Ivanova, I.P., Sovrem. Tekhnol. Med., 2018, vol. 10, no. 2, p. 91.Google Scholar
  8. 8.
    Piskarev, I.M., High Energy Chem., 2016, vol. 50, no. 4, p. 298.CrossRefGoogle Scholar
  9. 9.
    Piskarev, I.M., Tekh. Fiz., 1999, vol. 44, no. 1, p. 53.Google Scholar
  10. 10.
    Piskarev, I.M., Res. J. Pharm. Biol. Chem. Sci., 2015, vol. 6, no. (6), p. 1136.Google Scholar
  11. 11.
    Piskarev, I.M., High Energy Chem., 2018, vol. 52, no. 4, p. 348.CrossRefGoogle Scholar
  12. 12.
    Pikaev, A.K., Dozimetriya v radiatsionnoi khimii (Dosimetry in Radiation Chemistry), Moscow: Nauka, 1975.Google Scholar
  13. 13.
    Piskarev, I.M., High Energy Chem., 2018, vol. 52, no. 4, p. 212.CrossRefGoogle Scholar
  14. 14.
    Aristova, N.A., Ivanova, I.P., Trofimova, S.V., Knyazev, D.I., and Piskarev, I.M., High Energy Chem., 2011, vol. 45, no. 6, p. 505.CrossRefGoogle Scholar
  15. 15.
    Epstein, I.R., Kustin, K., and Warshaw, L.J., J. Am. Chem. Soc., 1980, vol. 102, no. 11, p. 3751.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Skobeltsyn Research Institute of Nuclear Physics, Moscow State UniversityMoscowRussia

Personalised recommendations