Advertisement

High Energy Chemistry

, Volume 53, Issue 1, pp 26–30 | Cite as

Influence of Dithiols on Fluorescence Blinking of Colloidal Quantum Dots InP@ZnS

  • V. Yu. GakEmail author
  • M. G. Spirin
  • S. B. Brichkin
  • V. F. Razumov
PHOTONICS
  • 5 Downloads

Abstract

The influence of 1,6-hexanedithiol as an additional short-chain stabilizing ligand on fluorescence blinking of semiconductor colloidal quantum dots InP@ZnS has been studied using the analysis of the fluorescence decay curves. The optimum proportion of 1,6-hexanedithiol in the mixture has been determined. The influence of the thickness of the ZnS shells and the diameter of the InP core has been also studied. Correlation of these dependences with the analogous dependences for the luminescence quantum yield is observed.

Keywords:

colloidal quantum dots indium phosphide dithiols luminescence lifetimes fluorescence blinking 

Notes

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education and Science of the Russian Federation under the Program for Increasing the Competitiveness of the Moscow Institute of Physics and Technology “5–100” among the world’s leading research and educational centers for 2016–2020 (M.2.2.1 P 1) and by the Russian Foundation for Basic Research (project no. 16-03-00756).

REFERENCES

  1. 1.
    Fernée, M.J., Tamarat, P., and Lounis, B., Chem. Soc. Rev., 2014, vol. 43, p. 1311.CrossRefGoogle Scholar
  2. 2.
    Brichkin, S.B. and Razumov, V.F., Usp. Khim., 2016, vol. 85, no. 12, p. 1297.CrossRefGoogle Scholar
  3. 3.
    Razumov, V.F., Usp. Fiz. Nauk, 2016, vol. 186, no. 12, p. 1368.CrossRefGoogle Scholar
  4. 4.
    Tenne, R., Teitelboim, A., Rukenstein, P., Dyshel, M., Mokari, T., and Oron, D., ACS Nano, 2013, vol. 7, no. 2013, p. 5084.Google Scholar
  5. 5.
    Mahler, B., Spinicelli, P., Buil, S., Quelin, X., Hermier, J.-P., and Dubertret, B., Nat. Mater., 2008, vol. 7, no. 8, p. 659.CrossRefGoogle Scholar
  6. 6.
    Chen, Y., Vela, J., Htoon, H., Casson, J.L., Werder, D.J., Bussian, D.A., Klimov, V.I., and Hollingsworth, J.A., J. Am. Chem. Soc., 2008, vol. 130, no. 15, p. 5026.CrossRefGoogle Scholar
  7. 7.
    Pavesi, I. and Piazza, F., Phys. Rev. B: Condens. Matter, 1991, vol. 44, p. 9052.CrossRefGoogle Scholar
  8. 8.
    Anc, M.J., Pickett, N.L., Gresty, N.C., Harris, J.A., and Mishra, K.C., ECS J. Solid State Sci. Technol., 2013, vol. 2, p. 3071.CrossRefGoogle Scholar
  9. 9.
    Spirin, M.G., Trepalin, V.V., Brichkin, S.B., and Razumov, V.F., High Energy Chem., 2018, vol. 52, no. 1, p. 81.CrossRefGoogle Scholar
  10. 10.
    Gak, V.Yu., Tovstun, S.A., Spirin, M.G., Brichkin, S.B., and Razumov, V.F., High Energy Chem., 2017, vol. 51, no. 2, p. 118.CrossRefGoogle Scholar
  11. 11.
    Spirin, M.G., Brichkin, S.B., and Razumov, V.F., High Energy Chem., 2018, vol. 52, no. 6, p. 498.CrossRefGoogle Scholar
  12. 12.
    Mićić, O.I., Ahrenkiel, S.P., and Nozik, A.J., Appl. Phys. Lett., 2001, vol. 78, p. 4022.CrossRefGoogle Scholar
  13. 13.
    Tovstun, S.A., Khim. Vys. Energ., 2016, vol. 50, no. 5, p. 345.Google Scholar
  14. 14.
    Koole, R., Luigjes, B., Tachiya, M., Pool, R., Vlugt, T.J.H., Donegá, C.M., Meijerink, A., and Vanmaekelbergh, D., J. Phys. Chem. C, 2007, vol. 111, p. 11208.CrossRefGoogle Scholar
  15. 15.
    Carrillo-Carriόn, C., Cárdenas, S., Simonet, B.M., and Valcarcel, M., Chem. Commun., 2009, p. 5214.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. Yu. Gak
    • 1
    • 2
    Email author
  • M. G. Spirin
    • 1
    • 2
  • S. B. Brichkin
    • 1
    • 2
  • V. F. Razumov
    • 1
    • 2
  1. 1.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia
  2. 2.Moscow Institute of Physics and Technology (State University)DolgoprudnyiRussia

Personalised recommendations