High Energy Chemistry

, Volume 53, Issue 5, pp 407–412 | Cite as

Superhydrophobic Aerogel of Polytetrafluoroethylene/Graphene Oxide Composite

  • S. A. Baskakov
  • Yu. V. Baskakova
  • E. N. Kabachkov
  • N. N. Dremova
  • A. S. Lobach
  • E. A. Zakutina
  • Yu. M. ShulgaEmail author


Polytetrafluoroethylene-based aerogel has been synthesized for the first time. Graphene oxide has been used as a binder. After reduction with hydrazine and annealing at 370°C, the aerogel surface has been found to become superhydrophobic (the contact angle of water is 162°). Superhydrophobic aerogel with a specific gravity of 30 mg/cm3 has been characterized by IR spectroscopy and X-ray photoelectron spectroscopy.


aerogel polytetrafluoroethylene graphene oxide superhydrophobicity IR spectroscopy X-ray photoelectron spectroscopy 



The work was performed using equipment of the Analytical Shared Facility Center at the Institute of Problems of Chemical Physics, Russian Academy of Sciences, the Shared Use Center at the National University of Science and Technology MISiS, and partially the Center of Competences of Scientific and Technical Information on technologies for new and mobile energy sources at the Institute of Problems of Chemical Physics, Russian Academy of Sciences.


This work was performed according to the State Assignment of the Russian Federation, state registration no. 0089-2019-0008.


  1. 1.
    Kistler, S.S., Nature, 1931, vol. 127, p. 741.CrossRefGoogle Scholar
  2. 2.
    Husing, N. and Schubert, U., Angew. Chem. Int. Ed. Engl., 1998, vol. 37, p. 22.CrossRefPubMedGoogle Scholar
  3. 3.
    Fricke, J., J. Non-Cryst. Solids, 1988, vol. 100, p. 169.CrossRefGoogle Scholar
  4. 4.
    Fricke, J. and Emmerling, A., J. Am. Ceram. Soc., 1992, vol. 75, p. 2027.CrossRefGoogle Scholar
  5. 5.
    Schultz, J.M., Jensen, K.I., and Kristiansen, F.H., Sol. Energy Mater. Sol. Cells, 2005, vol. 89, p. 275.CrossRefGoogle Scholar
  6. 6.
    Dorcheh, A.S. and Abbasi, M.H., J. Mater. Process. Technol., 2008, vol. 199, p. 10.CrossRefGoogle Scholar
  7. 7.
    Chen, C., Zhu, X., Chen, B., Lang, J., Li, C., Yan, Y., and Dai, J., Environ. Sci. Technol., 2019, vol. 53, p. 1509.CrossRefPubMedGoogle Scholar
  8. 8.
    Xie, A., Chen, Y., Cui, J., et al., Colloids Surf. A, 2019, vol. 563, p. 120.CrossRefGoogle Scholar
  9. 9.
    Li, R., Chen, C., Li, J., Xu, L., Xiao, G., and Yan, D., J. Mater. Chem. A, 2014, vol. 2, p. 3057.CrossRefGoogle Scholar
  10. 10.
    Cao, N., Lyu, Q., Li, J., Wang, Y., Yang, B., Szunerits, S., and Boukherroub, R., Chem. Eng. J., 2017, vol. 326, p. 17.CrossRefGoogle Scholar
  11. 11. Scholar
  12. 12.
    Liang, C.Y. and Krimm, S., J. Chem. Phys., 1956, vol. 25, p. 563.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. A. Baskakov
    • 1
  • Yu. V. Baskakova
    • 1
  • E. N. Kabachkov
    • 1
    • 2
  • N. N. Dremova
    • 1
  • A. S. Lobach
    • 1
  • E. A. Zakutina
    • 3
  • Yu. M. Shulga
    • 1
    • 4
    Email author
  1. 1.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia
  2. 2.Scientific Center in Chernogolovka, Russian Academy of SciencesChernogolovkaRussia
  3. 3.Faculty of Fundamental Physicochemical Engineering, Moscow State UniversityMoscowRussia
  4. 4.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations