Advertisement

High Energy Chemistry

, Volume 53, Issue 5, pp 365–370 | Cite as

Radiation-Thermal Degradation of Waste Plastics

  • V. N. ChulkovEmail author
  • A. V. Bludenko
  • A. V. Ponomarev
RADIATION CHEMISTRY
  • 24 Downloads

Abstract

The combination of dry distillation with irradiation with accelerated electrons can serve as a productive method for the conversion of waste plastics and their mixtures with cellulose wastes into liquid organic products. It was found that, on the combined distillation, plastics were mainly converted into soft wax and organic liquid. In turn, the lignocellulose fraction of mixed wastes was converted into furans (which can serve as raw materials for the subsequent synthesis of “green” plastics) and, in part, into phenolic inhibitors of reverse polymerization. The combined distillation is characterized by a lower yield of unsaturated and gaseous products, and it takes place at lower temperatures.

Keywords:

radiation-thermal decomposition municipal solid wastes waste plastics lignocellulose dry distillation 

Notes

FUNDING

This work was performed with the framework of state theme no. AAAA-A16-116121410087-6 using equipment of the Center for Shared Use of Instrumental Investigation Methods at the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

REFERENCES

  1. 1.
    Geyer, R., Jambeck, J.R., and Law, K.L., Sci. Adv., 2017, vol. 3, e1700782.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Burillo, G., Clough, R., Czvikovszky, T., Guven, O., Moel, A.L., Liu, W., Singh, A., Yang, J., and Zaharescu, T., Radiat. Phys. Chem., 2002, vol. 64, p. 41.CrossRefGoogle Scholar
  3. 3.
    Buah, W.K., Cunliffe, A.M., and Williams, P.T., Process Saf. Environ. Prot., 2007, vol. 85, p. 450.CrossRefGoogle Scholar
  4. 4.
    Kunwar, B., Cheng, H.N., Chandrashekaran, S.R., and Sharma, B.K., Renew. Sustain. Energy Rev., 2016, vol. 54, p. 421.CrossRefGoogle Scholar
  5. 5.
    Katami, T., Yasuhara, A., Okuda, T., and Shibamoto, T., Environ. Sci. Technol., 2002, vol. 36, p. 1320.CrossRefPubMedGoogle Scholar
  6. 6.
    Lopez, G., Artetxe, M., Amutio, M., Bilbao, J., and Olazar, M., Renew. Sustain. Energy Rev., 2017, vol. 73, p. 346.CrossRefGoogle Scholar
  7. 7.
    Gorbarev, I.N., Vlasov, S.I., Chulkov, V.N., Bludenko, A.V., and Ponomarev, A.V., The 13th International Symposium on Ionizing Radiation and Polymers: Book of Abstracts, Moscow: MSU, 2018. p. 116.Google Scholar
  8. 8.
    Metreveli, A.K. and Ponomarev, A.V., High Energy Chem., 2016, vol. 50, no. 2, p. 97.CrossRefGoogle Scholar
  9. 9.
    Ponomarev, A.V. and Ershov, B.G., Molecules, 2014, vol. 19, p. 16877.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Woods, R.J. and Pikaev, A.K., Applied Radiation Chemistry: Radiation Processing, New York: Wiley–Interscience, 1994.Google Scholar
  11. 11.
    Efika, E.C., Onwudili, J.A., and Williams, P.T., J. Anal. Appl. Pyrolys., vol. 112, no. is. 2015, p. 14.Google Scholar
  12. 12.
    Metreveli, P.K., Metreveli, A.K., Ponomarev, A.V., and Pavlov, Yu.S., High Energy Chem., 2018, vol. 52, no. 5, p. 414.CrossRefGoogle Scholar
  13. 13.
    Shalyminova, D.P., Cherezova, E.N., Ponomarev, A.V., and Tananaev, I.G., High Energy Chem., 2008, vol. 42, no. 5, p. 342.CrossRefGoogle Scholar
  14. 14.
    Gorbarev, I.N., Kasterin, A.I., Metreveli, P.K., and Ponomarev, A.V., J. Wood Sci., 2018, vol. 64, p. 675.CrossRefGoogle Scholar
  15. 15.
    Gandini, A. and Lacerda, T.M., Prog. Polym. Sci., 2015, vol. 48, p. 1.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. N. Chulkov
    • 1
    Email author
  • A. V. Bludenko
    • 1
  • A. V. Ponomarev
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations