Advertisement

High Energy Chemistry

, Volume 53, Issue 3, pp 219–227 | Cite as

Influence of Photogeneration Frequency on the Transport of Spin Charge Carriers in the Copolymer–Methanofullerene Composite: EPR Study

  • E. I. YudanovaEmail author
  • V. I. KrinichnyiEmail author
  • V. R. Bogatyrenko
  • N. N. Denisov
  • D. I. Nazarov
PHOTONICS

Abstract

The photovoltaic composite formed by narrow-gap copolymer poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(bithiophene)] and methanofullerene [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) has been studied in a wide energy range of generating photons, 1.32–3.14 eV at T = 77 K, by the light-induced electron paramagnetic resonance. It has been shown that some polarons are captured by spin traps formed in the copolymer matrix, and the concentration and depth of such traps are determined by the photon energy. The recombination kinetics of polarons and fullerene radical anions after turning off the light can be described in the framework of a second-order bimolecular process. The formation of spin traps in the copolymer matrix and the exchange interaction between different spin packets cause the extreme sensitivity of magnetic resonance and electronic parameters of charge carriers to the number and energy of generating photons.

Keywords:

bulk heterojunction photoinduced EPR spin relaxation charge recombination charge transfer polaron methanofullerene exciton dissociation 

Notes

ACKNOWLEDGMENTS

This work was carried out within the State assignment no. 0089-2014-0036 and was supported by the Russian Foundation for Basic Research, project no. 18-29-20011.

REFERENCES

  1. 1.
    Lupton, J.M., McCamey, D.R., and Boehme, C., ChemPhysChem, 2010, vol. 11, no. 14, p. 3040.CrossRefGoogle Scholar
  2. 2.
    Polymer Photovoltaics: Materials, Physics, and Device Engineering, Fei, H., Hin-Lap, Y., and Yong, C., Eds., Cambridge: Royal Society of Chemistry, 2015.Google Scholar
  3. 3.
    Park, S.H., Roy, A., Beaupre, S., Cho, S., Coates, N., Moon, J.S., Moses, D., Leclerc, M., Lee, K., and Heeger, A.J., Nat. Photon., 2009, vol. 3, p. 297.CrossRefGoogle Scholar
  4. 4.
    Griffin, J., Pearson, A.J., Scarratt, N.W., Wang, T., Dunbar, A.D.F., Yi, H., Iraqi, A., Buckley, A.R., and Lidzey, D.G., Org. Electron, 2015, vol. 21, p. 216.CrossRefGoogle Scholar
  5. 5.
    Lu, X.H., Hlaing, H., Germack, D.S., Peet, J., Jo, W.H., Andrienko, D., Kremer, K., and Ocko, B.M., Nat. Comm-un., 2012, vol. 3, p. 1290.CrossRefGoogle Scholar
  6. 6.
    Moon, J.S., Jo, J., and Heeger, A.J., Adv. Energy Mater., 2012, vol. 2, no. 3, p. 304.CrossRefGoogle Scholar
  7. 7.
    Banerji, N., Cowan, S., Leclerc, M., Vauthey, E., and Heeger, A.J., J. Am. Chem. Soc., 2010, vol. 132, no. 49, p. 17459.CrossRefGoogle Scholar
  8. 8.
    Gutzler, R. and Perepichka, D.F., J. Am. Chem. Soc., 2013, vol. 135, no. 44, p. 16585.CrossRefGoogle Scholar
  9. 9.
    Lukina, E.A., Uvarov, M.N., and Kulik, L.V., J. Phys. Chem. C, 2014, vol. 118, no. 32, p. 18307.CrossRefGoogle Scholar
  10. 10.
    Liedtke, M., Sperlich, A., Kraus, H., Baumann, A., Deibel, C., Wirix, M.J.M., Loos, J., Cardona, C.M., and Dyakonov, V., J. Am. Chem. Soc., 2011, vol. 133, no. 23, p. 9088.CrossRefGoogle Scholar
  11. 11.
    Krinichnyi, V.I., Spectroscopy of Polymer Nanocomposites, Thomas, S., Rouxel, D., Ponnamma, D., Eds., Amsterdam: Elsevier, 2016, p. 202.Google Scholar
  12. 12.
    Krinichnyi, V.I., Yudanova, E.I., and Bogatyrenko, V.R., J. Phys. Chem. Solids, 2017, vol. 111, no. 1, p. 153.CrossRefGoogle Scholar
  13. 13.
    Krinichnyi, V.I., Yudanova, E.I., and Bogatyrenko, V.R., Sol. Energy Mater. Sol. Cells, 2018, vol. 174, p. 333.CrossRefGoogle Scholar
  14. 14.
    Poluektov, O.G., Filippone, S., Martin, N., Sperlich, A., Deibel, C., and Dyakonov, V., J. Phys. Chem. B, 2010. vol. 114, no. 45, p. 14426.CrossRefGoogle Scholar
  15. 15.
    Niklas, J., Mardis, K.L., Banks, B.P., Grooms, G.M., Sperlich, A., Dyakonov, V., Beaupre, S., Leclerc, M., Xu, T., Yue, L., and Poluektov, O.G., Phys. Chem. Chem. Phys., 2013, vol. 15, no. 24, p. 9562.CrossRefGoogle Scholar
  16. 16.
    Poole, C.P., Jr., Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques, Mineola, NY: Dover, 1997.Google Scholar
  17. 17.
    Buchachenko, A.L., Turton, C.N., and Turton, T.I., Stable Radicals, New York: Consultants Bureau, 1995.Google Scholar
  18. 18.
    Molin, Y.N., Salikhov, K.M., and Zamaraev, K.I., Spin Exchange, Berlin: Springer, 1980.CrossRefGoogle Scholar
  19. 19.
    Houze, E. and Nechtschein, M., Phys. Rev. B: Condens. Matter, 1996, vol. 53, no. 21, p. 14309.CrossRefGoogle Scholar
  20. 20.
    Krinichnyi, V.I., Yudanova, E.I., and Wessling, B., Synth. Met., 2013, vol. 179, p. 67.CrossRefGoogle Scholar
  21. 21.
    Tachiya, M. and Seki, K., Phys. Rev. B: Condens. Matter, 2010, vol. 82, no. 8, p. 085201.CrossRefGoogle Scholar
  22. 22.
    Carrington, A. and McLachlan, A.D., Introduction to Magnetic Resonance with Application to Chemistry and Chemical Physics, New York: Harper and Row, 1967.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations