Advertisement

High Energy Chemistry

, Volume 53, Issue 3, pp 204–210 | Cite as

[2+2] Photocycloaddition of Styryl Dyes in the Cucurbit[8]uril Cavity and Its Ultrafast Dynamics

  • A. D. SviridaEmail author
  • D. A. Ivanov
  • I. V. Kryukov
  • Yu. A. Shandarov
  • N. Kh. Petrov
  • M. V. Alfimov
  • N. A. Aleksandrova
  • S. K. Sazonov
  • A. I. Vedernikov
  • S. P. Gromov
PHOTOCHEMISTRY
  • 2 Downloads

Abstract

[2+2] Photocycloaddition of a series of styryl dyes (a, b, and c, see text) in the cavity of cucurbit[8]uril (CB8) in aqueous solutions has been studied by optical spectroscopy. The complex formation constants were calculated for the 1 : 1 and 2 : 1 complexes of the styryl dyes with CB8. The optimal CB8 to dye molar ratios that correspond to the highest concentrations of the 2 : 1 complexes in the solution have been determined as 0.5, 0.3, and 1 for dyes a, b, and c, respectively. The quantum yields of photocycloaddition have been calculated from the results of dye photolysis in the presence of CB8: 0.06, 0.02, and 0.04 for a, b, and c, respectively. The fluorescence decay kinetics has been studied on the picosecond timescale. The lifetimes found are 1–2 ps, which correspond to the characteristic time of the solvation shell effect on the redistribution of the dye charge in the excited state. The long component of the fluorescence decay on the order of tens of picosecond is also observed. This component decreases in the presence of CB8, indicating the formation of dimeric state.

Keywords:

styryl dyes cucurbit[8]uril [2+2] photocycloaddition 

Notes

ACKNOWLEDGMENTS

The study was supported by the Russian Scientific Foundation, project no. 14-13-00751, in part of time-resolved measurements; by the Russian Foundation for Basic Research, project no. 18-03-00214, in part of the synthesis of styryl dyes; and by the Ministry of Science and Higher Education under the State Program of “Crystallography and Photonics” Federal Scientific Research Center in part of steady-state measurements.

REFERENCES

  1. 1.
    Lee, J.W., Samal, S., Selvapalam, N., Kim, H.-J., and Kim, K., Acc. Chem. Res., 2003, vol. 36, p. 621.CrossRefGoogle Scholar
  2. 2.
    Behrend, R., Meyer, E., and Rusche, F., Liebigs Ann. Chem., 1905, vol. 339, p. 1.CrossRefGoogle Scholar
  3. 3.
    Freeman, W.A., Mock, W.L., and Shih, N.-Y., J. Am. Chem. Soc., 1981, vol. 103, p. 7367.CrossRefGoogle Scholar
  4. 4.
    Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L., and Lu, X., RSC Adv., 2012, vol. 2, p. 1213.CrossRefGoogle Scholar
  5. 5.
    Svoboda, J. and Konig, B., Chem. Rev., 2006, vol. 106, p. 5413.CrossRefGoogle Scholar
  6. 6.
    Gromov, S.P., Izv. Akad. Nauk, Ser. Khim., 2008, p. 1299.Google Scholar
  7. 7.
    Gromov, S.P., Obzorn. Zh. Khim., 2011, vol. 1, p. 3.Google Scholar
  8. 8.
    Pemberton, B.C., Singh, R.K., Johnson, A.C., Jockusch, S., Da Silva, J.P., Ugrinov, A., Turro, N.J., Srivastava, D.K., and Sivaguru, J., Chem. Commun., 2011, vol. 47, p. 6323.CrossRefGoogle Scholar
  9. 9.
    Gromov, S.P., Vedernikov, A.I., Kuz’mina, L.G., Kondratuk, D.V., Sazonov, S.K., Strelenko, Yu.A., Alfimov, M.V., and Howard, J.A.K., Eur. J. Org. Chem., 2010, p. 2587.Google Scholar
  10. 10.
    Bach, T., Synthesis, 1998, p. 683.Google Scholar
  11. 11.
    Organic Nanoreactors: From Molecular to Supramolecular Organic Compounds, Sadjadi, S., Ed., Amsterdam: Elsevier/Academic. 2016.Google Scholar
  12. 12.
    Nakamura, A., Irie, H., Hara, S., Sugawarab, M., and Yamadab, S., Photochem. Photobiol. Sci., 2011, vol. 10, p. 1496.CrossRefGoogle Scholar
  13. 13.
    Jon, S.Y., Ko, Y.H., Park, S.H., Kim, H.-J., and Kim, K., Chem. Commun., 2001, p. 1938.Google Scholar
  14. 14.
    Pattabiraman, M., Kaanumalle, L.S., Natarajan, A., and Ramamurthy, V., Langmuir, 2006, vol. 22, p. 7605.CrossRefGoogle Scholar
  15. 15.
    Li, F., Zhuang, J., Jiang, G., Tang, H., Xia, A., Jiang, L., Song, Y., Li, Y., and Zhu, D., Chem. Mater., 2008, vol. 20, p. 1194.CrossRefGoogle Scholar
  16. 16.
    Ushakov, E.N., Vedernikov, A.I., Alfimov, M.V., and Gromov, S.P., Photochem. Photobiol. Sci., 2011, vol. 10, p. 15.CrossRefGoogle Scholar
  17. 17.
    Ushakov, E.N., Vedernikov, A.I., Lobova, N.A., Dmitrieva, S.N., Kuz’mina, L.G., Moiseeva, A.A., Howard, J.A.K., Alfimov, M.V., and Gromov, S.P., J. Phys. Chem. A, 2015, vol. 119, p. 13025.CrossRefGoogle Scholar
  18. 18.
    Hoyer, T., Tuszynski, W., and Lienau, Ch., Chem. Phys. Lett., 2007, vol. 443, p. 107.CrossRefGoogle Scholar
  19. 19.
    Hallmann, J., Morgenroth, W., Paulmann, C., Davaasambuu, J., Kong, Q., Wulff, M., and Techert, S., J. Am. Chem. Soc., 2009, vol. 131, p. 15018.CrossRefGoogle Scholar
  20. 20.
    Gans, P., Sabatini, A., and Vacca, A., Talanta, 1996, vol. 43, p. 1739.CrossRefGoogle Scholar
  21. 21.
    Ivanov, D.A., Petrov, N.Kh., Alfimov, M.V., Vedernikov, A.I., and Gromov, S.P., High Energy Chem., 2014, vol. 48, p. 253.CrossRefGoogle Scholar
  22. 22.
    Petrov, N.Kh., Ivanov, D.A., Shandarov, Yu.A., Kryukov, I.V., Avakyan, V.G., Alfimov, M.V., Sazo-nov, S.K., and Gromov, S.P., Nanotechnol. Russ, 2016, vol. 11, p. 221.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. D. Svirida
    • 1
    • 2
    Email author
  • D. A. Ivanov
    • 1
  • I. V. Kryukov
    • 1
  • Yu. A. Shandarov
    • 1
  • N. Kh. Petrov
    • 1
    • 2
  • M. V. Alfimov
    • 1
    • 2
  • N. A. Aleksandrova
    • 1
  • S. K. Sazonov
    • 1
  • A. I. Vedernikov
    • 1
  • S. P. Gromov
    • 1
    • 2
  1. 1.Photochemistry Center of the “Crystallography and Photonics” Federal Research Center, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)DolgoprudnyiRussia

Personalised recommendations