High Energy Chemistry

, Volume 53, Issue 3, pp 191–197 | Cite as

Actinometric Measurement of Fluence with Allowance for Spectral Distribution of a Polychromatic Radiation Source

  • N. A. LevichevEmail author
  • B. G. Ershov


The applicability of a uranyl oxalate actinometer as a means of measuring fluence from a source of high-intensity continuous-spectrum pulsed radiation is substantiated. A calculation procedure in a stationary photochemical system has been proposed and tested to demonstrate good agreement with computational methods.


actinometry uranyl oxalate pulsed xenon lamp energy fluence continuous emission spectrum 



  1. 1.
    Legrini, O., Oliveros, E., and Braun, A.M., Chem. Rev., 1993, vol. 93, no. 2, p. 671.CrossRefGoogle Scholar
  2. 2.
    Litter, M.I., The Handbook of Chemistry, vol. 2M: Environmental Photochemistry, Part II, (Boule, P., Bahnemann, D.W., and Robertson, P.K.J., Eds., Berlin: Springer, 2005.Google Scholar
  3. 3.
    Kamrukov, A.S., Kozlov, N.P., Seliverstov, A.F., et al., Bezopasn. Tekhnosf., 2006, no. 1, p. 38.Google Scholar
  4. 4.
    Gómez-López, V.M., Ragaert, P., Debevere, J., and Devlieghere, F., Trends Food Sci. Technol., 2007, vol. 18, no. 9, p. 464.CrossRefGoogle Scholar
  5. 5.
    Benchea, R.E., Cretescu, I., Kalinowski, S., and Koronkiewicz, S., Anal. Methods, 2013, vol. 5, p. 3650.CrossRefGoogle Scholar
  6. 6.
    Casado, C., Marugan, J., Timmers, R., et al., Chem. Eng. J., 2017, vol. 310, p. 368.CrossRefGoogle Scholar
  7. 7.
    Kuhn, H.J., Braslavsky, S.E., and Schmidt, R., Pure Appl. Chem., 2004, vol. 76, no. 12, p. 2105.CrossRefGoogle Scholar
  8. 8.
    Zimmerman, G., Chow, L.-Y., and Paik, U.-J., J. Am. Chem. Soc., 1958, vol. 80, p. 3528.CrossRefGoogle Scholar
  9. 9.
    Esplugas, S., Gimenez, J., Contreras, S., et al., Water Res., 2002, vol. 36, p. 1034.CrossRefGoogle Scholar
  10. 10.
    Bayarri, B., Illana, E., Curcó, D., et al., Water Sci. Technol., 2007, vol. 55, no. 12, p. 147.CrossRefGoogle Scholar
  11. 11.
    Panich, N.M., Seliverstov, A.F., and Ershov, B.G., Russ. J. Appl. Chem., 2008, vol. 81, no. 12, p. 2104.CrossRefGoogle Scholar
  12. 12.
    Bolton, J.R., Mayor-Smith, I., and Linden, K.G., Photochem. Photobiol., 2015, vol. 91, no. 6, p. 1252.CrossRefGoogle Scholar
  13. 13.
    Kireev, S.G., Arkhipov, V.P., Shashkovskii, S.G., and Kozlov, N.P., Fotonika, 2017, vol. 68, no. 8, p. 48.Google Scholar
  14. 14.
    Jayadevan, N.C. and Chackraburtty, D.M., Acta Crystallogr., 1972, vol. 28, no. 11, p. 3178.CrossRefGoogle Scholar
  15. 15.
    Heidt, L.J., Tregay, G.W., and Middleton, F.A., J. Phys. Chem., 1970, vol. 74, no. 9, p. 1876.CrossRefGoogle Scholar
  16. 16.
    Curcó, D., Malato, S., Blanco, J., and Giménez, J., Solar Energy Mater. Solar Cells, 1996, vol. 44, p. 199.CrossRefGoogle Scholar
  17. 17.
    Havel, J., Soto-Guerrero, J., and Lubal, P., Polyhedron, 2002, vol. 21, nos. 14–15, p. 1411.CrossRefGoogle Scholar
  18. 18.
    Leighton, W.G. and Forbes, G.S., J. Am. Chem. Soc., 1930, vol. 52, no. 8, p. 3139.CrossRefGoogle Scholar
  19. 19.
    Kowalski, W., Ultraviolet Germicidal Irradiation Handbook, Berlin: SDpringer, 2009.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations