Advertisement

High Energy Chemistry

, Volume 53, Issue 3, pp 254–260 | Cite as

Plasma Electrochemical Synthesis of Few-Layer Graphene Structures for Modification of Epoxy Binder

  • A. G. KrivenkoEmail author
  • R. A. Manzhos
  • V. K. Kochergin
  • G. V. Malkov
  • A. E. Tarasov
  • N. P. Piven
PLASMA CHEMISTRY
  • 2 Downloads

Abstract

Few-layer graphene structures synthesized by the plasma electrochemical method are used as modifiers of epoxy binders. It is shown that the obtained structures have the maximum positive effect on the strength characteristics of a cured epoxy–amine composition at a concentration of 0.2 wt %.

Keywords:

few-layer graphene structures plasma electrochemical synthesis epoxy binders composites modification 

Notes

ACKNOWLEDGMENTS

The authors thank E.N. Kabachkov for the XPS studies performed using the equipment at the Shared Facility Center of the Chernogolovka Scientific Center of the Russian Academy of Sciences.

This work was supported by the Russian Foundation for Basic Research, project no. 16-03-00475a.

REFERENCES

  1. 1.
    Domun, N., Hadavinia, H., Zhang, T., Sainsbury, T., Liaghat, G.H., and Vahid, S., Nanoscale, 2015, vol. 7, p. 10294.CrossRefGoogle Scholar
  2. 2.
    Liu, S., Chevali, V.S., Xu, Z., Hui, D., and Wang, H., Compos., Part B: Eng. 2018, vol. 136, p. 197.CrossRefGoogle Scholar
  3. 3.
    Badamshina, E.R., Gafurova, M.P., and Estrin, Y.I., Russ. Chem. Rev., 2010, vol. 79, p. 945.CrossRefGoogle Scholar
  4. 4.
    Fitzer, E., Geigl, K.-H., Huttner, W., and Weiss, R., Carbon, 1980, vol. 18, p. 389.CrossRefGoogle Scholar
  5. 5.
    Chae, S., Hashimi, K., Bratescu, M.A., and Saito, N., Nanosci. Nanotechnol. Lett., 2016, vol. 10, p. 784.CrossRefGoogle Scholar
  6. 6.
    Krivenko, A.G., Manzhos, R.A., and Kotkin, A.S., High Energy Chem., 2018, vol. 52, p. 272.CrossRefGoogle Scholar
  7. 7.
    Belkin, P.N. and Kusmanov, S.A., Rev. Surf. Eng. Appl. Electrochem., 2016, vol. 52, p. 531.CrossRefGoogle Scholar
  8. 8.
    Li, O.L., Chiba, S., and Wada, Y., J. Mater. Chem. A, 2017, vol. 5, p. 2073.CrossRefGoogle Scholar
  9. 9.
    Gardner, S.D., Singamsetty, C.S.K., Booth, G.L., and He, G.-R., Carbon, 1995, vol. 33, p. 587.CrossRefGoogle Scholar
  10. 10.
    Zaka, M., Ito, Y., Wang, H., Yan, W., Robertson, A., Wu, Y.A., Rummeli, M.H., Staunton, D., Hashimoto, T., Morton, J.J.L., Ardavan, A., Briggs, G.A.D., and Warner, J.H., ACS Nano, 2010, vol. 4, p. 7708.CrossRefGoogle Scholar
  11. 11.
    Kannan, M.V. and Kumar, G.G., Biosens. Bioelectron., 2016, vol. 77, p. 1208.CrossRefGoogle Scholar
  12. 12.
    Song, Y., Liu, T.-Y., Xu, G.-L, Feng, D.-Y, Yao, B., Kou, T.-Y., Liu, X.-X., and Li, Y., J. Mater. Chem. A, 2016, vol. 4, p. 7683.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. G. Krivenko
    • 1
    Email author
  • R. A. Manzhos
    • 1
  • V. K. Kochergin
    • 2
  • G. V. Malkov
    • 1
  • A. E. Tarasov
    • 1
  • N. P. Piven
    • 3
  1. 1.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia
  2. 2.Faculty of Chemistry, Moscow State UniversityMoscowRussia
  3. 3.Institute of Energy Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations