Advertisement

High Energy Chemistry

, Volume 53, Issue 3, pp 246–253 | Cite as

Reduction of Boron Trichloride in Atmospheric-Pressure Argon–Hydrogen Radiofrequency Induction Plasma

  • R. A. KornevEmail author
  • P. G. Sennikov
  • L. V. Shabarova
  • A. I. Shishkin
  • T. A. Drozdova
  • S. V. Sintsov
PLASMA CHEMISTRY
  • 3 Downloads

Abstract

The main operating modes of a radiofrequency induction plasma torch with a vortex stabilization of the atmospheric-pressure gas discharge at have been studied in an argon-hydrogen mixture in the range of Ar/H2 = 12–4. The dependences of the electron temperature Te and number density ne on the Ar/H2 ratio have been experimentally studied. It has been found that the electron temperature and concentration in pure argon plasma are 0.88 eV and 7.6 × 1014 cm−3, respectively. When the Ar/H2 ratio decreases, the electron temperature decreases to 0.42 eV, and the electron number density is 8 × 1012 cm−3. The calorimetric method used to estimate the gas temperature Tg, has given a value of 2500 K. The process of BCl3 reduction with hydrogen has been studied at the implemented operating modes of the induction plasma torch. The main products of the reduction of boron trichloride are a polycrystalline boron powder and dichloroborane. The morphology of boron and its phase composition and impurities have been studied. The average particle size of the boron powder is 200 nm.

Keywords:

radiofrequency induction plasma torch emission spectroscopy boron trichloride nanoboron 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 17-13-01027). Authors thank the Ministry of Science and Higher Education of the Russian Federation (project no. 0095-2016-0006) for providing analytical equipment for characterization of the material.

REFERENCES

  1. 1.
    Reed, T.B., J. Appl. Phys., 1961, vol. 32, p. 821.CrossRefGoogle Scholar
  2. 2.
    Eckert, H.U., Report SAMSO-TR-227, Los Angeles: Space and Missile Systems Organization, 1972.Google Scholar
  3. 3.
    Mazin, V.I., RU Patent 2233563, 2004.Google Scholar
  4. 4.
    Frolov, V., Matveev, I., Ivanov, D., Zverev, S., Ushin, B., and Petrov, G., Rom. J. Phys., 2011, vol. 56, p. 36.Google Scholar
  5. 5.
    Matveev, I., Matveyeva, S., and Zverev, S., IEEE Trans. Plasma Sci., 2014, vol. 42, p. 3891.CrossRefGoogle Scholar
  6. 6.
    Vetrov, S.I., Spitsyn, A.V., Shuvaev, D.A., and Yanchenkov, S.V., Plasma Phys. Rep., 2006, vol. 32, p. 418.CrossRefGoogle Scholar
  7. 7.
    Gol’dfarb, V.M. and Dresvin, S.V., Teplofiz. Vys. Temp., 1995, vol. 3, p. 333.Google Scholar
  8. 8.
    Isola, L.M., Gómez, B.J., and Guerra, V., J. Phys. D: Appl. Phys., 2010, vol. 43, p. 01520.CrossRefGoogle Scholar
  9. 9.
    Greene, B.R., Clemens, N.T., Varghese, P.L., Bouslog, S.A., and Del Papa, S.V., 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 9–13 January 2017, AIAA SciTech Forum, (AIAA 2017-0394).Google Scholar
  10. 10.
    Laux, C.O., Spence, T.G., Kruger, C.H., and Zare, R.N., Plasma Sources Sci. Technol., 2003, vol. 12, p. 125.Google Scholar
  11. 11.
    Diana, M., Russo, G., and Mario, L., Proceedings of International Round Table on Study and Applications of Transport Phenomena in Thermal Plasmas, Bonnet, C. Ed., Odeillo: CNRS, 1975, Rep. 1.8.Google Scholar
  12. 12.
    Cueilleron, J. and Cruiziat, B., Bull. Soc. Chim. Fr., 1973, vol. 4, p. 1207.Google Scholar
  13. 13.
    Murdoch, H.D. and Hamblyn, S.M.L., US Patent 3625846, 1971.Google Scholar
  14. 14.
    Kelina, I.Yu., Ershova, N.I., Arakcheev, A.V., et al., Refract. Ind. Ceram., 2004, vol. 45, p. P. 185.Google Scholar
  15. 15.
    Rusanov, V.D. and Fridman, A.A., Physics of Chemically Active Plasma, Boca Raton: CRC, 2007.Google Scholar
  16. 16.
    Han, G. and Cho, G., Appl. Sci. Converg. Technol., 2017, vol. 26, p. 201.Google Scholar
  17. 17.
    Zhu, X.-M. and Pu, Y.-K., Plasma Sources Sci. Technol., 2008, vol. 17, p. 024002.CrossRefGoogle Scholar
  18. 18.
    Iordanova, E., de Vries, N., Guillemier, M., and Mvan der Mullen J.J., J. Phys. D: Appl. Phys., 2008, vol. 41, p. 015208.CrossRefGoogle Scholar
  19. 19.
    Bityurin, V.A., Grigorenko, A.V., Efimov, A.V., Klimov, A.I., Korshunov, O.V., Kutuzov, D.S., and Chinnov, V.F., High Temp., 2014, vol. 52, p. P. 31.Google Scholar
  20. 20.
    Raizer, Y.P., Gas Discharge Physics, Berlin: Spriger, 1991.CrossRefGoogle Scholar
  21. 21.
    Nester, S.A., Potapkin, B.V., Levitskii, A.A., Rusanov, V.D., Trusov, B.G., and Fridman, A.A., Kinetiko-statisticheskoe modelirovanie khimicheskikh reaktsii v gazovom razryade (Kinetic–Statistical Modeling of Chemical Reactions in Gas Discharge), Moscow: TsNII Atominform, 1988.Google Scholar
  22. 22.
    Fridman, A., Plasma Chemistry, New York: Cambridge Univ. Press, 2008.CrossRefGoogle Scholar
  23. 23.
    Tsvetkov, Yu.V. and Panfilov, S.A., Nizkotemperaturnaya plazma v protsessakh vosstanovleniya (Low-Temperature Plasma in Reduction Processes), Moscow: Nauka, 1980.Google Scholar
  24. 24.
    Lannin, J.S., Solid State Commun., 1978, vol. 25, p. 363.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • R. A. Kornev
    • 1
    Email author
  • P. G. Sennikov
    • 1
  • L. V. Shabarova
    • 1
  • A. I. Shishkin
    • 2
  • T. A. Drozdova
    • 2
  • S. V. Sintsov
    • 3
  1. 1.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Nizhny Novgorod State Technical UniversityNizhny NovgorodRussia
  3. 3.Institute of Applied Physics, Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations