Advertisement

High Energy Chemistry

, Volume 53, Issue 3, pp 177–182 | Cite as

Atomistic Simulation of Impurities Segregation to Free Surfaces of α-Al2O3

  • V. A. Kislenko
  • M. S. Vlaskin
  • S. A. KislenkoEmail author
GENERAL ASPECTS
  • 10 Downloads

Abstract

Segregation of di- and trivalent impurities to the (00.1), (01.2) and (11.3) surfaces of α-Al2O3 has been investigated using molecular mechanics simulation. In this work, the focus has been on segregation energy calculations depending on impurity size, distance to the surface, and surface coverage. It has been shown the anisotropic segregation of dopants. The segregation energy to the most stable (00.1) surface has the lowest absolute value for all investigated impurities. For trivalent impurities at the (01.2) surface the dependence of the segregation energy on surface coverage has the minimum, which corresponds to the ordered arrangement of dopants. At the (11.3) surface the multilayer segregation has been observed, whereas at the (00.1) and (01.2) surfaces the model of monolayer segregation is acceptable in most studied cases.

Keywords:

segregation corundum impurity atomistic simulation 

REFERENCES

  1. 1.
    Bae, I.-J. and Baik, S., J. Am. Ceram. Soc., 1997, vol. 80, no. 5, p. 1149.CrossRefGoogle Scholar
  2. 2.
    Schacht, M., Boukis, N., and Dinjus, E., J. Mater. Sci., 2000, vol. 35, no. 24, p. 6251.CrossRefGoogle Scholar
  3. 3.
    Cho, J., Wang, C.M., Chan, H.M., Rickman, J.M., and Harmer, M.P., Acta Mater., 1999, vol. 47, no. 15, p. 4197.CrossRefGoogle Scholar
  4. 4.
    Cho, J., Harmer, M.P., Chan, H.M., Rickman, J.M., and Thompson, A.M., J. Am. Ceram. Soc., 1997, vol. 80, no. 4, p. 1013.CrossRefGoogle Scholar
  5. 5.
    Bennison, S.J. and Harmer, M., P, J. Am. Ceram. Soc., 1983, vol. 66, no. 5.Google Scholar
  6. 6.
    Bae, I.S. and Baik, S., J. Am. Ceram. Soc., 1993, vol. 76, no. 4, p. 1065.CrossRefGoogle Scholar
  7. 7.
    Galmarini, S., Aschauer, U., Bowen, P., and Parker, S.C., J. Am. Ceram. Soc., 2008, vol. 91, no. 11, p. 3643.CrossRefGoogle Scholar
  8. 8.
    Buban, J.P., Matsunaga, K., Chen, J., Shibata, N., Ching, W.Y., Yamamoto, T., and Ikuhara, Y., Science, 2006, vol. 311, no. 5758, p. 212.CrossRefGoogle Scholar
  9. 9.
    Thomas, G., Stefan, N., Wolfgang, K., and Manfred, R., J. Am. Ceram. Soc., 2003, vol. 86, no. 4, p. 590.CrossRefGoogle Scholar
  10. 10.
    Baik, S., Fowler, D.E., Blakely, J.M., and Raj, R., J. Am. Ceram. Soc., 1985, vol. 68, no. 5, p. 281.CrossRefGoogle Scholar
  11. 11.
    Sunggi, B., J. Am. Ceram. Soc., 1986, vol. 69, no. 5.Google Scholar
  12. 12.
    Zhuk, A.Z., Vlaskin, M.S., Grigorenko, A.V., Kislenko, S.A., and Shkolnikov, E.I., J. Ceram. Process. Res., 2016, vol. 17, no. 9, p. 910.Google Scholar
  13. 13.
    Zhuk, A.Z. and Vlaskin, M.S., Mater. Today: Proc., 2017, vol. 4, no. 11, p. 11580.Google Scholar
  14. 14.
    Galmarini, S., Aschauer, U., Tewari, A., Aman, Y., Van Gestel, C., and Bowen, P., J. Eur. Ceram. Soc., 2011, vol. 31, no. 15, p. 2839.CrossRefGoogle Scholar
  15. 15.
    Baik, S. and White, C.L., J. Am. Ceram. Soc., 1987, vol. 70, no. 9, p. 682.CrossRefGoogle Scholar
  16. 16.
    Choi, J.-H., Kim, D.Y., Hockey, B.J., Wiederhorn, S.M., Handwerker, C.A., Blendell, J.E., Carter, W.C., and Roosen, A.R., J. Am. Ceram. Soc., 1997, vol. 80, no. 1, p. 62.CrossRefGoogle Scholar
  17. 17.
    Marmier, A. and Parker, S.C., Phys. Rev. B: Condens. Matter, 2004, vol. 69, no. 11, p. 115409.CrossRefGoogle Scholar
  18. 18.
    Atkinson, K.J.W., Grimes, R.W., Levy, M.R., Coull, Z.L., and English, T., J. Eur. Ceram. Soc., 2003, vol. 23, no. 16, p. 3059.CrossRefGoogle Scholar
  19. 19.
    Parker, S.C., de Leeuw, N.H., Bourova, E., and Cooke, D.J., Rev. Miner. Geochem, 2001, vol. 42.Google Scholar
  20. 20.
    Cooke, D.J., Redfern, S.E., and Parker, S.C., Phys. Chem. Miner., 2004, vol. 31, no. 8, p. 507.CrossRefGoogle Scholar
  21. 21.
    Masri, P., Tasker, P.W., Hoare, J.P., and Harding, J.H., Surf. Sci., 1986, vol. 173, no. 2, p. 439.CrossRefGoogle Scholar
  22. 22.
    Mackrodt, W.C. and Tasker, P.W., MRS Symp. Proc., 1986, vol. 60, p. 291.Google Scholar
  23. 23.
    Gulgun, M.A., Voytovych, R., Maclaren, I., Ruhle, M., and Cannon, R.M., Interface Sci., 2002, vol. 10, no. 1, p. 99.CrossRefGoogle Scholar
  24. 24.
    McLean, D., Grain Boundaries in Metals, Oxford: Clarendon, 1957.Google Scholar
  25. 25.
    McCune, R.C., Donlon, W.T., and Ku, R.C., J. Am. Ceram. Soc., 1986, vol. 69, no. 8, p. 196.CrossRefGoogle Scholar
  26. 26.
    Kislenko, S.A., Vlaskin, M.S., and Zhuk, A.Z., Solid State Ionics, 2016, vol. 293, p. 1.CrossRefGoogle Scholar
  27. 27.
    Davies, M.J., Kenway, P.R., Lawrence, P.J., Parker, S.C., MacKrodt, W.C., and Tasker, P.W., J. Chem. Soc., Faraday Trans. 2, 1989, vol. 85, no. 5, p. 555.CrossRefGoogle Scholar
  28. 28.
    Mukhopadhyay, S.M., Jardine, A.P., Blakely, J.M., and Baik, S., J. Am. Ceram. Soc., 1988, vol. 71, no. 5, p. 358.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Kislenko
    • 1
    • 2
  • M. S. Vlaskin
    • 1
  • S. A. Kislenko
    • 1
    Email author
  1. 1.Joint Institute for High Temperature, Russian Academy of ScienceMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (National Research University)DolgoprudryRussia

Personalised recommendations