Advertisement

High Energy Chemistry

, Volume 53, Issue 3, pp 183–190 | Cite as

Sol–Gel Transition-Accompanied Radical Polymerization Initiated by Two Primary Radicals

  • I. P. KimEmail author
  • V. A. Benderskii
GENERAL ASPECTS OF HIGH ENERGY CHEMISTRY
  • 6 Downloads

Abstract

When irradiation generates two radicals capable of initiating chain growth with different rate constants for chain transfer, two polymerization routes with different average chain length emerge. These pathways are not mixed in the initial part of the ballistic growth. Their mixing in chain transfer events is accompanied by transition from ballistic to diffusion growth. In the sol–gel transition region, the routes are spatially separated if the chain transfer depends on the rotational mobility of the reactants and decreases with increasing viscosity as the resulting oligomers accumulate. As an example, the polymerization of tetrafluoroethylene in solutions of silanes and oxysilanes is considered.

Keywords:

radical polymerization primary radicals ballistic and diffusion chain growth sol–gel transition 

Notes

REFERENCES

  1. 1.
    Kim, I.P. and Shestakov, A.F., High Energy Chem., 2009, vol. 43, no. 6, p. 460.CrossRefGoogle Scholar
  2. 2.
    Kim, I.P., Martynenko, I.M., Shul’ga, Yu.M., and Shestakov, A.F., High Energy Chem., 2010, vol. 44, no. 6, p. 449.CrossRefGoogle Scholar
  3. 3.
    Kim, I.P., High Energy Chem., 2011, vol. 45, no. 5, p. 365.CrossRefGoogle Scholar
  4. 4.
    Kim, I.P., Perepelitsina, E.O., Shestakov, A.F., and Shul’ga, Yu.M., Kunitsa.A.A, High Energy Chem., 2011, vol. 45, no. 6, p. 475.CrossRefGoogle Scholar
  5. 5.
    Kim, I.P., Izv. Akad. Nauk, Ser. Khim., 2013, no. 9, p. 2065.Google Scholar
  6. 6.
    Kunitsa, A.A., Shestakov, A.F., and Kim, I.P., Izv. Akad. Nauk, Ser. Khim., 2011, no. 9, p. 1761.Google Scholar
  7. 7.
    Benderskii, V.A., Makarov, D.E., and Wight, C.A., Chemical Dynamics at Low Temperatures, New York: Wiley, 1994.CrossRefGoogle Scholar
  8. 8.
    Kim, I.P., Benderskii, V.A., Martynenko, V.M., and Chernyak, A.V., High Energy Chem., 2017, vol. 51, no. 4, p. 277.CrossRefGoogle Scholar
  9. 9.
    Kim, I.P., Martynenko, V.M., Chernyak, A.V., and Benderskii, V.A., High Energy Chem., 2017, vol. 51, no. 4, p. 285.CrossRefGoogle Scholar
  10. 10.
    Brinker, C.J. and Scherer, G.W., Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing, Boston: Academic, 1990.Google Scholar
  11. 11.
    Lopez, M.C., Demitras, I., Maskill, H., and Mishima, M., J. Phys. Org. Chem., 2008, vol. 21, p. 614.CrossRefGoogle Scholar
  12. 12.
    Ignatyev, I.S., Montenjo, M., and Gonzalez, J.L., Dalton Trans., 2010, vol. 39, p. 6967.CrossRefGoogle Scholar
  13. 13.
    Agarwal, U.S. and Khakhar, D.V., J. Chem. Phys., 1993, vol. 99, p. 1382.CrossRefGoogle Scholar
  14. 14.
    Gupta, J.S. and Khakhar, D.V., J. Chem. Phys., 1998, vol. 108, p. 5626.CrossRefGoogle Scholar
  15. 15.
    Baldo, M., Grass, A., and Raudino, A., Phys. Rev. A, 1989, vol. 40. p. 1017.CrossRefGoogle Scholar
  16. 16.
    Vasanthi, R., Bhattacharyya, S., and Bagchi, B., J. Chem. Phys., 2002, vol. 116, p. 1092.CrossRefGoogle Scholar
  17. 17.
    Doi, M. and Edwards, S.F., J. Chem. Soc., Faraday Trans 2, 1978, vol. 74, p. 918.CrossRefGoogle Scholar
  18. 18.
    Doi, M. and Edwards, S.F., J. Chem. Soc., Faraday Trans 2, 1978, vol. 74, p. 1818.CrossRefGoogle Scholar
  19. 19.
    Doi, M. and Edwards, S.F., The Theory of Polymer Dynamics, Oxford: Clarendon/Oxford Univ. Press, 1986.Google Scholar
  20. 20.
    Rubtsov, I.V., Acc. Chem. Res, 2009, vol. 42, p. 1385.CrossRefGoogle Scholar
  21. 21.
    Benderskii, V.A. and Kats, E.I., J. Exp. Theor. Phys., 2013, vol. 116, no. 1, p. 1.CrossRefGoogle Scholar
  22. 22.
    Benderskii, V.A., Kotkin, A.S., Kats, E.I., and Rubtsov, I.V., JETP Lett., 2013, vol. 98, no. 4, p. 219.CrossRefGoogle Scholar
  23. 23.
    Lynd, N.A. and Hillmayer, M.A., Macromolecules, 2007, vol. 40, p. 8050.CrossRefGoogle Scholar
  24. 24.
    Listak, J., Jakubowski, W., Mueller, L., Plichta, A., Matyjaszwski, K., and Bockstaller, M.R., Macromolecules, 2008, vol. 41, p. 5919.CrossRefGoogle Scholar
  25. 25.
    Gentekos, D.T., Dupuis, L.N., and Fors, B.P., J. Am. Chem. Soc., 2016, vol. 138, p. 18548.CrossRefGoogle Scholar
  26. 26.
    Amorem, M., Talarico, G., and Barone, V., J. Am. Chem. Soc., 2006, vol. 128, p. 1099.CrossRefGoogle Scholar
  27. 27.
    Tsige, M., Curro, J.G., and Grest, G.S., J. Chem. Phys., 2008, vol. 129, p. 214901.CrossRefGoogle Scholar
  28. 28.
    Dalvi, V.H. and Rossky, P.J., Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, p. 13603.CrossRefGoogle Scholar
  29. 29.
    Chandrasekhar, S., Liquid Crystals, Cambridge: Cambridge Univ. Press, 1977.Google Scholar
  30. 30.
    Kayser, R.F. and Raveche, H.J., Phys. Rev. A, 1978, vol, 17, p. 2067.CrossRefGoogle Scholar
  31. 31.
    Zilman, A., Kiefier, J., Molino, F., Porte, G., and Safran, S.A., Phys. Rev. Lett., 2003, vol. 91, p. 015901.CrossRefGoogle Scholar
  32. 32.
    Kim, I.P. and Benderskii, V.A., High Energy Chem., 2010, vol. 44, no. 5, p. 357.CrossRefGoogle Scholar
  33. 33.
    Kim, I.P. and Benderskii, V.A., High Energy Chem., 2011, vol. 45, no. 5, p. 372.CrossRefGoogle Scholar
  34. 34.
    Kim, I.P. and Benderskii, V.A., High Energy Chem., 2015, vol. 49, no. 1, p. 1.CrossRefGoogle Scholar
  35. 35.
    De Gennes, P.G., Scaling Concepts in Polymer Physics, Ithaca: Cornell Univ. Press, 1979.Google Scholar
  36. 36.
    Grosberg, A.Yu. and Khokhlov, A.R., Statistical Physics of Macromolecules, New York: Springer, 1994.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations