High Energy Chemistry

, Volume 53, Issue 3, pp 211–218 | Cite as

Reversible [2+2] Photocycloaddition in Supramolecular Covalently Bound Dyad with 3-(4-Oxystyryl)benzo[f]quinoline as Photochrome and o-Xylene Bridge Group

  • M. F. BudykaEmail author
  • N. I. Potashova
  • T. N. Gavrishova
  • Yu. A. Fedulova


Reaction of [2+2] photocycloaddition has been observed in the covalently bound bichromophoric dyad, in which the styrylbenzoquinoline (CBQ) photochromes are linked by the o-xylylene bridge group. Cyclobutane CB4M with two identical vicinal benzoquinoline (BQ) substituents undergoes reversible cycle opening (retro-photocycloaddition). A comparison with structurally similar cyclobutane CB4N, which bears the same BQ substituents linked by another bridge group and does not enter into the retro-photocycloaddition, shows that the photochemical properties can be controlled by varying the bridge group. Quantum-chemical calculations in the DFT approximation predict the existence of conformers with π-stacking interactions of SBQ photochromes in the dyad and BQ substituents in cyclobutane.


diarylethylene bichromophoric dyad fluorescence photoisomerization photocycloaddition cyclobutane excimer 



The authors are grateful to Dr. E.N. Ushakov for the discussion of the results of the study.

The study was supported by the State Program no. 01201361847 and the Russian Foundation for Basic Research, project no. 17-03-00789.


  1. 1.
    Budyka, M.F., Gavrishova, T.N., and Potashova, N.I., Chem. Select, 2016, vol. 1, p. 36.Google Scholar
  2. 2.
    Budyka, M.F., Potashova, N.I., Gavrishova, T.N., and Li, V.M., High Energy Chem., 2017, vol. 51, p. 201.CrossRefGoogle Scholar
  3. 3.
    Somlai, A.P., Cozad, R.A., Page, K.A., Williams, H.R., Creed, D., and Hoyle, C.E., Photochem. Photobiol. Sci., 2008, vol. 7, p. 578.CrossRefGoogle Scholar
  4. 4.
    Budyka, M.F., Gavrishova, T.N., Potashova, N.I., and Chashchikhin, O.V., High Energy Chem., 2015, vol. 49, p. 237.CrossRefGoogle Scholar
  5. 5.
    Budyka, M.F., Gavrishova, T.N., Potashova, N.I., and Li, V.M., Chem. Select, 2018, vol. 3, p. 10651.Google Scholar
  6. 6.
    Becker, H.D., Chem. Rev., 1993, vol. 93, p. 145.CrossRefGoogle Scholar
  7. 7.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 09, Revision B.01, Wallingford. CT: Gaussian, 2010.Google Scholar
  8. 8.
    Budyka, M.F., Potashova, N.I., Gavrishova, T.N., Li, V.M., Gak, Yu.V., and Grineva, I.A., High Energy Chem., 2018, vol. 52, p. 222.CrossRefGoogle Scholar
  9. 9.
    Budyka, M.F., Gavrishova, T.N., Li, V.M., and Dozmorov, S.A., High Energy Chem., 2019, vol. 53, no. 1, p. 5.CrossRefGoogle Scholar
  10. 10.
    Budyka, M.F., Potashova, N.I., Gavrishova, T.N., and Li, V.M., High Energy Chem., 2010, vol. 44, p. 404.CrossRefGoogle Scholar
  11. 11.
    Zhao, Y. and Truhlar, D.G., Theor. Chem. Acc., 2006, vol. 120, p. 215.CrossRefGoogle Scholar
  12. 12.
    Chung, J.W., You, Y., Huh, H.S., An, B.K., Yoon, S.J., Kim, S.H., Lee, S.W., and Park, S.Y., J. Am. Chem. Soc., 2009, vol. 131, p. 8163.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. F. Budyka
    • 1
    Email author
  • N. I. Potashova
    • 1
  • T. N. Gavrishova
    • 1
  • Yu. A. Fedulova
    • 1
    • 2
  1. 1.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia
  2. 2.Faculty of Basic Physicochemical Engineering, Moscow State UniversityMoscowRussia

Personalised recommendations