Advertisement

High Energy Chemistry

, Volume 53, Issue 1, pp 76–81 | Cite as

The Effect of Modification by Direct-Current Discharge on the Surface Properties, Chemical Structure, and Morphology of Poly(ethylene terephtalate) Films

  • M. S. PiskarevEmail author
  • A. B. GilmanEmail author
  • A. K. Gatin
  • A. I. Gaidar
  • T. S. Kurkin
  • A. A. Kuznetsov
PLASMA CHEMISTRY
  • 3 Downloads

Abstract

The contact properties, chemical structure and surface morphology of poly(ethylene terephthalate) films modified by direct-current discharge at the cathode and anode have been studied. A substantial improvement in wettability and an increase in total surface energy and its polar term, which are retained upon storage in air at ambient conditions, have been shown. The change in the chemical structure of the plasma-modified films has been studied by X-ray photoelectron spectroscopy, and the formation of a significant amount of oxygen-containing groups on the surface has been demonstrated. The investigation of the modified films by atomic force microscopy and scanning electron microscopy has provided revealed a change in morphology of the surface and an increase in its roughness.

Keywords:

poly(ethylene terephthalate) direct-current discharge modification at the anode and cathode wettability chemical structure surface morphology of films 

Notes

ACKNOWLEDGMENTS

The study was supported by the Russian Foundation for Basic Research, project no. 18-32-00901 (XPS, AFM, and SEM studies).

REFERENCES

  1. 1.
    Pak, V.M. and Trubachev, S.G., Novye materialy i sistemy izolyatsii vysokovol’tnykh elektricheskikh mashin (Novel Insulation Materials and Systems for High-Voltage Electrical Machines), Moscow: Energoatomizdat, 2007.Google Scholar
  2. 2.
    Drachev, A.I., Pak, V.M., Gilman, A.B., and Kuznetsov, A.A., Elektrotekhnika, 2002, no. 4, p. 19.Google Scholar
  3. 3.
    Drachev, A.I., Pak, V.M., Gilman, A.B., and Kuznetsov, A.A., Elektrotekhnika, 2003, no. 4, p. 35.Google Scholar
  4. 4.
    Endo, T., Reddy, L., Nishikawa, H., Kaneko, S., Nakamura, Y., and Endo, K., Procedia Eng. J, 2017, vol. 171, p. 88.Google Scholar
  5. 5.
    De Bergalis, M., J. Fluorine Chem., 2004, vol. 125, p. 1255.CrossRefGoogle Scholar
  6. 6.
    Vesel, A. and Mozetic, M., J. Phys. D: Appl. Phys., 2017, vol. 50, no. 29, p. P.112536.Google Scholar
  7. 7.
    Polymer Surface Modification: Relevance to Adhesion, Mittal, K.L., Ed., Utrecht: VSP, 2009.Google Scholar
  8. 8.
    Friedrich, J., The Plasma Chemistry of Polymer Surfaces: Advanced Techniques for Surface Design, Weinheim: Wiley–VCH, 2012.CrossRefGoogle Scholar
  9. 9.
    Pocius, A.V., Adhesion and Adhesive Technology, Munich: Carl Hanser, 2002, 2nd ed.Google Scholar
  10. 10.
    Deshmukh, R.R. and Bhat, N.V., Mater. Res. Innovat., 2003, vol. 7, no. 5, p. 283.CrossRefGoogle Scholar
  11. 11.
    Al-Maliki, H., Zsidai, L., Samyn, P., Szakal, Z., Keresztes, R., and Kalacska, G., Polym. Eng. Sci., 2017, p. 1002.Google Scholar
  12. 12.
    Rezaei, F., Dickey, M.D., Bourham, M., and Hauser, P.J., Surf. Coat. Technol., 2017, vol. 309, p. 371.CrossRefGoogle Scholar
  13. 13.
    Drachev, A.I., Gilman, A.B., Pak, V.M., and Kuznetsov, A.A., High Energy Chem., 2002, vol. 36, no. 2, p. 116.CrossRefGoogle Scholar
  14. 14.
    Drachev, A.I., Gilman, A.B., Pak, V.M., and Kuznetsov, A.A., High Energy Chem., 2006, vol. 40, no. 6, p. 417.CrossRefGoogle Scholar
  15. 15.
    Demina, T.S., Drozdova, M.G., Yablokov, M.Y., Gaidar, A.I., Gilman, A.B., Zaytseva-Zotova, D.S., Markvicheva, E.A., Akopova, T.A., and Zelenetskii, A.N., Plasma Process. Polym., 2015, vol. 12, no. 8, p. P. 710.Google Scholar
  16. 16.
    Wu, S., Polymer Interfaces and Adhesion, New York: Marcel Dekker, 1982, p. 152.Google Scholar
  17. 17.
    Beamson, G. and Briggs, D., High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database, Chichester: Wiley, 1992.Google Scholar
  18. 18.
    Briggs, D., Surface Analysis of Polymers by XPS and Static SIMS, Cambridge: Cambrige Univ. Press, 1998.CrossRefGoogle Scholar
  19. 19.
    Wade, W.L., Mammone, R.J., and Binder, M., J. Appl. Polym. Sci., 1991, vol. 43, no. 9, p. 1589.CrossRefGoogle Scholar
  20. 20.
    Rezaei, F., Dickey, M.D., Bourham, M., and Hauser, P.J., Surf. Coat. Technol., 2017, vol. 309, p. 371.CrossRefGoogle Scholar
  21. 21.
    Vesel, A., Mozetic, M., and Zalar, A., Vacuum, 2008, vol. 82, p. 248.CrossRefGoogle Scholar
  22. 22.
    Deshmukh, R.R. and Bhat, N.V., Mater. Res. Innovat., 2003, vol. 7, p. 283.CrossRefGoogle Scholar
  23. 23.
    Piskarev, M.S., Gilman, A.B., Ionov, A.M., and Kuznetsov, A.A., High Energy Chem., 2016, vol. 50, no. 2. p. 155.CrossRefGoogle Scholar
  24. 24.
    Yablokov, M.Yu., Sokolov, I.V., Malinovskaya, O.S., Gilman, A.B., and Kuznetsov, A.A., High Energy Chem., 2013, vol. 47, no. 1, p. 32.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of SciencesMoscowRussia
  2. 2.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia
  3. 3.Research Institute of Advanced Materials and TechnologiesMoscowRussia

Personalised recommendations