Advertisement

High Energy Chemistry

, Volume 53, Issue 1, pp 71–75 | Cite as

Radiation Defects in Aluminum Nitride-Based Ceramics

  • A. L. KozlovskiiEmail author
  • K. Dukenbaev
  • M. V. Zdorovets
RADIATION CHEMISTRY
  • 5 Downloads

Abstract

The defect formation in AlN ceramics by bombarding with Fe+7 ions at a fluence ranging from 1 × 1011 to 1 × 1014 ion/cm2 has been studied. Changes in the main crystallographic characteristics, a decrease in the Griffiths criterion, and an increased in average stress as a result of irradiation are due to the appearance of additional defects in the structure and their subsequent evolution leading to changes in the degree of crystallinity. Pyramidal hillocks with an average height of 17–20 nm are observed to form on the surface of samples irradiated with Fe+7 ions at a fluence of 1 × 1011 ion/cm2.

Keywords:

ceramics hillocks ionizing radiation structural properties 

Notes

REFERENCES

  1. 1.
    Liu, Y., et al., Ceram. Int., 2017, vol. 43, no. 16, p. 13618.CrossRefGoogle Scholar
  2. 2.
    Jin, K., et al., J. Appl. Phys., 2014, vol. 115, no. 4, p. 044903.CrossRefGoogle Scholar
  3. 3.
    Zhang, Y., et al., J. Appl. Phys., 2004, vol. 95, no. 5, p. 2866.CrossRefGoogle Scholar
  4. 4.
    Zhang, Y., et al., Phys. Chem. Chem. Phys., 2014, vol. 16, no. 17, p. 8051.CrossRefGoogle Scholar
  5. 5.
    Aidhy, D.S., Zhang, Y., and Weber, W.J., Scripta Mater., 2014, vol. 83, p. 9.CrossRefGoogle Scholar
  6. 6.
    Sina, Y., et al., Nucl. Instrum. Methods Phys. Res., Sect. B, 2014, vol. 321, p. 8.Google Scholar
  7. 7.
    Dey, S., et al., Sci. Rep., 2015, vol. 5, p. 7746.CrossRefGoogle Scholar
  8. 8.
    Ferre, F.G., et al., Corros. Sci., 2017, vol. 124, p. 80.CrossRefGoogle Scholar
  9. 9.
    Edmondson, P.D., et al., Acta Mater., 2012, vol. 60, no. 15, p. 5408.CrossRefGoogle Scholar
  10. 10.
    Beck, L., et al., J. Mater. Res., 2015, vol. 30, no. 9, p. 1183.CrossRefGoogle Scholar
  11. 11.
    Ferre, F.G., et al., Corros. Sci., 2013, vol. 77, p. 375.CrossRefGoogle Scholar
  12. 12.
    Cao, C., et al., Ceram. Int., 2017, vol. 43, p. 9334.CrossRefGoogle Scholar
  13. 13.
    Zhang, Y., et al., Phys. Chem. Chem. Phys., 2012, vol. 14, no. 38, p. 13429.CrossRefGoogle Scholar
  14. 14.
    Jamison, L., et al., J. Nucl. Mater., 2014, vol. 445, nos. 1–3, p. 181.CrossRefGoogle Scholar
  15. 15.
    Trinkler, L., et al., Radiat. Meas., 2001, vol. 33, no. 5, p. 731.CrossRefGoogle Scholar
  16. 16.
    Trinkler, L., et al., Radiat. Prot. Dosim., 2000, vol. 92, p. 299.CrossRefGoogle Scholar
  17. 17.
    Saboori, A., et al., Materials, 2017, vol. 10, p. 1380.CrossRefGoogle Scholar
  18. 18.
    Wang, D., et al., J. Mater. Sci., 2017, vol. 28, p. 6731.Google Scholar
  19. 19.
    Dasgupta, P., Fisika A (Croatia), 2000, vol. 9, no. 2, p. 61.Google Scholar
  20. 20.
    Puerta, J., Appl. Opt., 1981, vol. 20, no. 22, p. 3923.CrossRefGoogle Scholar
  21. 21.
    Costantini, J.-M., et al., J. Appl. Phys., 2018, vol. 123, no. 2, p. 025901.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. L. Kozlovskii
    • 1
    • 2
    Email author
  • K. Dukenbaev
    • 3
  • M. V. Zdorovets
    • 1
    • 2
    • 4
  1. 1.Institute of Nuclear Physics, Ministry of Energy of the Republic of KazakhstanAlmatyKazakhstan
  2. 2.Gumilyov Eurasian National UniversityAstanaKazakhstan
  3. 3.School of Engineering, Nazarbayev UniversityAstanaKazakhstan
  4. 4.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations