Advertisement

High Energy Chemistry

, Volume 53, Issue 1, pp 58–65 | Cite as

Dissociation of Molecular Negative Ions of Tetracyanoquinodimethane at the Ionization-Chamber Surface upon Resonance Electron Capture

  • L. Z. KhatymovaEmail author
  • V. G. Lukin
  • G. M. Tuimedov
  • O. G. Khvostenko
RADIATION CHEMISTRY
  • 2 Downloads

Abstract

The mass spectrum of negative ions due to resonance electron capture by molecules of tetracyanoquinodimethane (TCNQ), a well-known electron acceptor, has been recorded in order to identify the dissociation processes of TCNQ molecular negative ions on the surface of an ionization chamber at thermal energies of electrons to be attached to the molecules. It has been found that the TCNQ molecular negative ions, preliminarily generated in the gas phase at several resonance maxima, reach the ionization chamber walls owing to a long extra-electron autodetachment lifetime ranging from 25 s in the first resonance at zero electron energy to 0.2 s in the resonance at 3.3 eV and dissociate at the walls as a result of the influence of the surface on the energy balance of the dissociation process. It has been taken into account that without the surface effect on the energy balance, this dissociation would be impossible because of an insufficient energy of the electron captured by the molecule. By B3LYP/6-311G calculations, the most probable dissociation pathways have been determined for negative fragment ions with various empirical formulas. The data obtained can be used to solve problems related to the properties of the TCNQ molecule in interaction with the conductive surface of a metal substrate in electronic devices.

Keywords:

tetracyanoquinodimethane resonance electron capture by molecules surface dissociation of molecular negative ions 

Notes

ACKNOWLEDGMENTS

This work was supported in part by the Russian Foundation for Basic Research and the Administration of the Republic of Bashkortostan, project no. 17-42-020643.

REFERENCES

  1. 1.
    Acker, D.S., Harder, R.J., Hertler, W.R., Mahler, W., Melby, L.R., Benson, R.E., and Mochel, W.E., J. Am. Chem. Soc., 1960, vol. 82, no. 24, 6408.CrossRefGoogle Scholar
  2. 2.
    Brooks, J.S., Chem. Soc. Rev., 2010, vol. 39, p. 2667.Google Scholar
  3. 3.
    Koh, W., Shin, T., Jung, C., and Cho, K.-S., ChemPhysChem, 2016, vol. 17, p. 1095.CrossRefGoogle Scholar
  4. 4.
    Wang, C., Dong, H., Hu, W., Liu, Y., and Zhu, D., Chem. Rev., 2012, vol. 112, no. 4, p. 2208.CrossRefGoogle Scholar
  5. 5.
    Tang, C.W., Appl. Phys. Lett., 1986, vol. 48, p. 183.CrossRefGoogle Scholar
  6. 6.
    Zhang, X., Saber, M.R., Prosvirin, A.P., Reibenspies, J.H., Sun, L., Ballesteros-Rivas, M., Zhao, H., and Dunbar, K.R., Inorg. Chem. Front., 2015, vol. 2, p. 904.CrossRefGoogle Scholar
  7. 7.
    Forrest, S.R. and Thompson, M.E., Chem. Rev., 2007, vol. 107, p. 923.CrossRefGoogle Scholar
  8. 8.
    Friend, R.H., Gymer, R.W., Holmes, A.B., Burroughes, J.H., Marks, R.N., Taliani, C., Bradley, D.D.C., Dos Santos, D.A., Brédas, J.L., Lögdlund, M., and Salaneck, W.R., Nature, 1999, vol. 397, p. 121.CrossRefGoogle Scholar
  9. 9.
    Klots, C.E., Compton, R.N., and Raaen, V.F., J. Chem. Phys., 1974, vol. 60, p. 1177.CrossRefGoogle Scholar
  10. 10.
    Ferraris, J., Cowan, D.O., Walatka, V., and Perlstein, J.H., J. Am. Chem. Soc., 1973, vol. 95, no. 3, p. 948.CrossRefGoogle Scholar
  11. 11.
    Pshenichnyuk, S.A., Modelli, A., Lazneva, E.F., and Komolov, A.S., J. Phys. Chem. A, 2014, vol. 118, p. 6810.CrossRefGoogle Scholar
  12. 12.
    Lukin, V.G., Instrum. Exp. Tech., 2013, vol. 56, no. 5, p. 565.CrossRefGoogle Scholar
  13. 13.
    Khatymova, L.Z., Mazunov, V.A., and Khaty-mov, R.V., Istoriya Nauki Tekh., 2011, no. 3, p. 11.Google Scholar
  14. 14.
    Khvostenko, V.I. and Tolstikov, G.A., Russ. Chem. Rev., 1976, vol. 45, p. 127.CrossRefGoogle Scholar
  15. 15.
    Compton, R.N. and Cooper, C.D., J. Chem. Phys., 1977, vol. 66, no. 10, p. 4325.CrossRefGoogle Scholar
  16. 16.
    Lukin, V.G. and Khvostenko, O.G., Usp. Fiz. Nauk, 2017, vol. 187, no. 9, p. 981.CrossRefGoogle Scholar
  17. 17.
    Lukin, V.G., Khvostenko, O.G., and Tuimedov, G.M., Int. J. Mass Spectrom. Ion Processes, 2016, vol. 399–400, p. 17.CrossRefGoogle Scholar
  18. 18.
    Lukin, V.G., Khvostenko, O.G., and Tuimedov, G.M., Tech. Phys., 2017, vol. 62, no. 7, p. 998.CrossRefGoogle Scholar
  19. 19.
    Lukin, V.G., Khvostenko, O.G., and Tuimedov, G.M., Pis’ma Zh. Tekh. Fiz., 2016, vol. 42, no. 4, p. 96.Google Scholar
  20. 20.
    Khvostenko, O.G., Shchukin, P.V., Tuimedov, G.M., Muftakhov, M.V., Tseplin, E.E., Tseplina, S.N., and Mazunov, V.A., Int. J. Mass Spectrom. Ion Processes, 2008, vol. 273, p. 69.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. Z. Khatymova
    • 1
    Email author
  • V. G. Lukin
    • 1
  • G. M. Tuimedov
    • 1
  • O. G. Khvostenko
    • 1
  1. 1.Institute of Molecule and Crystal Physics, Ufa Federal Research Center, Russian Academy of SciencesUfaRussia

Personalised recommendations