Advertisement

High Energy Chemistry

, Volume 53, Issue 1, pp 31–39 | Cite as

Excitons and Localized States in Nanosized Molecular Aggregates with Impurities

  • V. A. BenderskiiEmail author
PHOTONICS
  • 12 Downloads

Abstract

The eigenvalues and eigenfunctions of excitons and localized states making up the spectrum of nanosized (number of sites <100) molecular chains with one and two impurity sites have been found from the solution of secular equations at an energy V of excited impurity states and their interaction energy W with neighboring sites (in a homogeneous chain, V = 0, W = 1). A method is proposed for determining the universal relations of energies, density of states, amplitude distributions, and localization lengths to V and W. It has been shown that the rates of tunneling and hopping between impurities located at different relative distances depend on band reorganization in the initial and transition states.

Keywords:

one-dimensional molecular models band and localized states density of states localization length 

Notes

ACKNOWLEDGMENTS

This work was supported by the Presidium of the Russian Academy of Sciences under the Fundamental Research Program PFI 1.8 P and in the framework of project no. 0007-2014-FANO.

REFERENCES

  1. 1.
    Van Amerongen, H., Valcunas, L., and Grondelle, R., Photo-Synthetic Excitons, Singapore: World Scientific, 2000.CrossRefGoogle Scholar
  2. 2.
    Blakenship, R.E., Molecular Mechanisms of Photosynthesis, Oxford: Blackwell Science, 2002.CrossRefGoogle Scholar
  3. 3.
    Ishizaki, A. and Fleming, G.R., J. Chem. Phys., 2009, vol. 130, p. 234111.CrossRefGoogle Scholar
  4. 4.
    Di Ventra, M. and Zwolak, M., Encyclopedia of Nanoscience and Nanotechnology, Singh-Nalwa, H. Ed., Stevenson Ranch, CA: American Scientific, 2004, vol. 2, p. 475.Google Scholar
  5. 5.
    Chen, M.C., Liaw, D.J., Huang, Y.C., Wu, H.Y., and Tai, Y., Sol. Energy Mater. Sol. Cells, no. (2011), p. 2621.Google Scholar
  6. 6.
    Organic Solar Cells: Materials and Device Physics, Choy, W.C.H., Ed., London: Springer, 2013.Google Scholar
  7. 7.
    You, J., Dou, L., Hong, Z., Li, G., and Yang, Y., Prog. Polym. Sci., 2013, vol. 38, p. 1909.CrossRefGoogle Scholar
  8. 8.
    Reineke, S., Thomschke, M., Lussem, B., and Leo, K., Rev. Mod. Phys., 2013, vol. 85, p. 1246.CrossRefGoogle Scholar
  9. 9.
    Benderskii, V.A. and Kats, E.I., JETP Lett., 2015, vol. 101, p. 17.CrossRefGoogle Scholar
  10. 10.
    Benderskii, V.A. and Kats, E.I., J. Exp. Theor. Phys., 2018. (in press).Google Scholar
  11. 11.
    Benderskii, V.A. and Kats, E.I., High Energy Chem., 2018, vol. 52, no. 5, p. 390.CrossRefGoogle Scholar
  12. 12.
    Benderskii, V.A. and Kats, E.I., High Energy Chem., 2018, vol. 52, no. 5, p. 400.CrossRefGoogle Scholar
  13. 13.
    Touless, D.J., Phys. Rep., 1974, vol. 13, p. 93.CrossRefGoogle Scholar
  14. 14.
    Datta, S., Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge Univ. Press, 1995.CrossRefGoogle Scholar
  15. 15.
    Sokoulis, C.M. and Economou, E.N., Waves Random Media, 1999, vol. 9, p. 255.CrossRefGoogle Scholar
  16. 16.
    Oguri, A., Phys. Rev. B: Condens. Matter, 2001, vol. 63, p. 115305.CrossRefGoogle Scholar
  17. 17.
    Cheragchi, H., Fazeli, S.M., and Esfariani, K., Phys. Rev. B: Condens. Matter, 2005, vol. 72, p. P. 174207.Google Scholar
  18. 18.
    Carter, J.M. and Mackinnon, Phys. Rev. B: Condens. Matter, 2005, vol. 72, p. 024208.CrossRefGoogle Scholar
  19. 19.
    Ruiz, J., Jodar, E., and Gasparian, V., Phys. Rev. B: Condens. Matter, 2007, vol. 75, p. 235123.CrossRefGoogle Scholar
  20. 20.
    Wu, J., Liu, F., Shen, Y., Cao, J., and Silbey, R.J., New J. Phys., 2010, vol. 12, p. 105012.CrossRefGoogle Scholar
  21. 21.
    Zhong, X., Zhao, Y., and Cao, J., J. Chem. Phys., 2013, vol. 139, p. 224112.CrossRefGoogle Scholar
  22. 22.
    Szegö, G., Orthogonal Polynomials, Providence, Rhode Island: American Mathematical Society, 1958, 2nd ed.Google Scholar
  23. 23.
    Zaslavskii, G.M., Stokhastichnost’ dinamicheskikh sistem (Stochasticity of Dynamic Systems), Moscow: Nauka, 1984.Google Scholar
  24. 24.
    Benderskii, V.A., Fal’kovsky, L.A., and Kats, E.I., JETP Lett., 2007, vol. 86, p. 221.CrossRefGoogle Scholar
  25. 25.
    Benderskii, V.A. and Kats, E.I., J. Exp. Theor. Phys., 2011, vol. 140, p. 562.CrossRefGoogle Scholar
  26. 26.
    Benderskii, V.A., Kotkin, A.S., and Kats, E.I., Phys. Lett. A, 2013, vol. 377, p. 737.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations