Advertisement

High Energy Chemistry

, Volume 52, Issue 5, pp 423–428 | Cite as

Simulation of Gas-Dynamic and Thermal Processes in Vortex-Stabilized, Inductively Coupled Argon–Hydrogen Plasma

  • L. V. Shabarova
  • R. A. Kornev
  • P. G. Sennikov
Plasma Chemistry
  • 10 Downloads

Abstract

The flow of vortex-stabilized argon–hydrogen plasma in a radiofrequency induction (RFI) plasma torch has been investigated using modern methods of computational fluid dynamics. Optimal values of the torch power and energy release in plasma have been found at various argon to hydrogen ratios in the plasma gas mixture. The heat and kinetic fields determined by calculation for a plasma-chemical reactor can be of use in designing an RFI plasma torch in part concerning the determination of the optimum zone for feeding the reactants to the reactor.

Keywords

computational experiment RFI plasma torch gas dynamics heat exchange energy release 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Terrones, M., Annu. Rev. Mater. Res., 2003, vol. 33, p.419.CrossRefGoogle Scholar
  2. 2.
    Loiseau, A., Willaime, F., Demoncy, N., Hug, G., and Pascard, H., Phys. Rev. Lett., 1996, no. (25), p. 4737.CrossRefGoogle Scholar
  3. 3.
    Matveev, I., Matveyeva, S., and Zverev, S., IEEE Trans. Plasma Sci., 2014, vol. 42, no. 12, p. 3891.CrossRefGoogle Scholar
  4. 4.
    Fathalizadeh, A., Pham, T., Mickelson, W., and Zettl, A., Nano Lett., 2014, vol. 14, p. 4881.CrossRefPubMedGoogle Scholar
  5. 5.
    Sennikov, P.G., Kornev, R.A., and Abrosimov, N.V., J. Radioanal. Nucl. Chem., 2015, vol. 301, p.21.CrossRefGoogle Scholar
  6. 6.
    Mostaghimi, J. and Boulos, M.I., Plasma Chem. Plasma Process., 1989, vol. 9, no. 1, p.25.CrossRefGoogle Scholar
  7. 7.
    Xue, S., Proulx, P., and Boulos, M.I., J. Phys. D: Appl. Phys., 2001, vol. 34, p. 1897.CrossRefGoogle Scholar
  8. 8.
    Grishin, Yu.M. and Myao, L., Nauka Obraz. MGTU im. N.E. Baumana, Elektron. Zh., 2016, no. 05, p.104.Google Scholar
  9. 9.
    Cao, T. and Cheng, Y., Plasma Sources Sci. Technol., 2016, vol. 25, no. 2, p. 025011.CrossRefGoogle Scholar
  10. 10.
    Ivanov, D.V. and Zverev, S.G., IEEE Trans. Plasma Sci., 2017, vol. 45, no. 12, p. 3125.CrossRefGoogle Scholar
  11. 11.
    Anderson, D.A., Tannehill J.C., and Pletcher, R.H, Computational Fluid Dynamics and Heat Transfer, New York: Hemisphere, 1984Google Scholar
  12. 12.
    Bystrov, Yu.A., Isaev, S.A., Kudryavtsev, N.A., and Leont’ev, A.I., Chislennoe modelirovanie vikhrevoi intensifikatsii teploobmena v paketakh trub (Numerical Simulation of Vortex Intensification of Heat Transfer in Tube Banks), St. Petersburg: Sudostroenie, 2005.Google Scholar
  13. 13.
    Murphy, A.B., Plasma Chem. Plasma Process., 2000, vol. 20, no. 3, p. 279.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. V. Shabarova
    • 1
  • R. A. Kornev
    • 1
  • P. G. Sennikov
    • 1
  1. 1.Institute of Chemistry of High-Purity SubstancesRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations