Advertisement

High Energy Chemistry

, Volume 52, Issue 5, pp 400–406 | Cite as

Autoionization of Excitons in Organic Solar Cells

  • V. A. Benderskii
  • E. I. Kats
Photonics
  • 2 Downloads

Abstract

It has been shown that in addition to the conventional mechanism of photovoltaic effect in organic solar cells (OSCs), which is the ionization of molecular excitons on impurities, a new mechanism is possible in nanoscale cells, namely, tunneling autoionization in a strong electric field of the pn junction. Its quantum yield for molecular excitons and charge-transfer excitons becomes higher than for ionization on impurities with a cell length of less than 20–25 or 60–80 lattice periods (~10 and ~25 nm), respectively. The possibility of creating cascades of series-connected OSCs with a quantum yield close to 1 on the basis of the new mechanism is discussed.

Keywords

molecular excitons charge-transfer excitons autoionization photovoltaic effect organic solar cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Organic Solar Cells: Materials and Device Physics, Choy, W.C.H., Ed., London: Springer, 2013.Google Scholar
  2. 2.
    Chen, Y.-H., Lin, L.-H., Lu, C.-W., Lin, F., Huang, Z.-Y., Lin, H.-W., Wang, P.-H., Liu, Y.-H., Wong, K.-T., Wen, J., Miller, D.J., and Darling, S.B.J., Am. Chem. Soc., 2012, vol. 134, p. 13616.CrossRefGoogle Scholar
  3. 3.
    Dennler, G., Scharber, M.C., and Brabec, C.J., Adv. Mater., 2009, vol. 21, p. 1323.CrossRefGoogle Scholar
  4. 4.
    Li, N. and Forrest, S.R., Appl. Phys. Lett., 2009, vol. 95, no. 123309.Google Scholar
  5. 5.
    Chen, M.C., Liaw, D.J., Huang, Y.C., Wu, H.Y., and Tai, Y., Sol. Energy Mater. Sol. Cells, 2011, vol. 95, p. 2621.CrossRefGoogle Scholar
  6. 6.
    Cnops, K., Rand, B.P., Cheyns, D., and Heremans, P., Appl. Phys. Lett., 2012, p. 143301.Google Scholar
  7. 7.
    Dou, L., You, J., Yang, J., Chen, C-C., He, Y., Murase, S., Moriarty, T., Emery, K., Li, G., and Yang, Y., Nat. Photon., 2012, vol. 6, p.180.CrossRefGoogle Scholar
  8. 8.
    Schlenker, C.W., Barlier, V.S., Chin, S.W., Whited,M.T., McAnally, R.E., Forrest, S.R., and Thompson, M.E., Chem. Mater., 2011, vol. 23, p. 4132.CrossRefGoogle Scholar
  9. 9.
    Liang, Y., Xu, Z., Xia, J., Tsai, S.-T., Wu, Y., Li, G., Ray, C., and Yu, L., Adv. Mater., 2010, vol. 22, p. E135.CrossRefGoogle Scholar
  10. 10.
    Rubo, M., Kaji, T., and Hiramoto, M., AIP Adv., 2011, vol. 1, no. 032177.Google Scholar
  11. 11.
    Benderskii, V.A. and Kats, E.I., JETP Lett., 2015, vol. 101, p.19.CrossRefGoogle Scholar
  12. 12.
    Benderskii, V.A., Kats. E.I, High Energy Chem., 2018, vol. 52, no. 5, p.390.Google Scholar
  13. 13.
    Akimov, A.V. and Prezhdo, O.V., Chem. Rev., 2015, vol. 115, p. 5797.CrossRefGoogle Scholar
  14. 14.
    Tortorella, S., Talamo, M.P., Cardone, A., Pastore, M., and DeAngelis, F., J. Phys.: Condens. Matter, 2016, vol. 28, no. 074005.Google Scholar
  15. 15.
    Landau, L.D. and Lifshits, E.M., Kvantovaya mekhanika (Quantum Mechanics), Moscow: Nauka, 1989.Google Scholar
  16. 16.
    Herring, C., Rev. Mod. Phys., 1962, vol. 34, p.631.CrossRefGoogle Scholar
  17. 17.
    Benderskii, V.A. and Vetoshkin, E.V., Chem. Phys., 2000, vol. 257, p. 203.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Landau Institute of Theoretical PhysicsRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations