Hydrogen Peroxide Formation in Boiling Water Plasma of Electrolyte-Cathode Discharge
Plasma Chemistry
First Online:
Received:
- 4 Downloads
Abstract
A mechanism is proposed for the formation of hydrogen peroxide in an electrolyte-cathode atmospheric-pressure direct-current discharge. A local increase in the temperature of water in the area of liquid contact with the gas discharge causes its boiling, and strong electric fields due to unevenness of the turbulent surface appear on the splashes. As a result, a local breakdown of the hemispherical region of boiling water beneath the electrolyte-cathode spot is possible. The kinetic scheme of the reactions for water vapor plasma has been considered, and hydrogen peroxide concentrations have been calculated, the calculation results being in satisfactory agreement with experimental data.
Keywords
direct-current discharge hydrogen peroxide water vapor plasma kineticsPreview
Unable to display preview. Download preview PDF.
References
- 1.Rybkin, V.V., Titov, V.A., Chumadova, E.S., and Shikova, T.G., Izv. Vyssh. Uchebn. Zaved.: Khim. Khim. Tekhnol., 2008, vol. 51, no. 11, p.29.Google Scholar
- 2.Medodovic, S., Thagard, S.M., Takashima, K., and Mizuno, A., Plasma Chem. Plasma Process., 2009, vol. 29, no. 6, p.455.CrossRefGoogle Scholar
- 3.Shih, K.Y. and Locke, B.R., Plasma Chem. Plasma Process., 2010, vol. 30, no. 1, p.1.CrossRefGoogle Scholar
- 4.Du, Ch.M., Sun, Y.W., and Zhuang, X.F., Plasma Chem. Plasma Process., 2008, vol. 28, no. 4, p.523.CrossRefGoogle Scholar
- 5.Wang, L., Plasma Chem. Plasma Process., 2009, vol. 29, no. 3, p.241.CrossRefGoogle Scholar
- 6.Liu, Y. and Jiang, X., Plasma Chem. Plasma Process., 2008, vol. T. 28, no. 1, p. C.15.CrossRefGoogle Scholar
- 7.Bobkova, E.S., Shikova, T.G., Grinevich, V.I., and Rybkin, V.V., High Energy Chem., 2012, vol. 46, no. 1, p.56.CrossRefGoogle Scholar
- 8.Itikawa, Y. and Mason, N., J. Phys. Chem. Ref. Data, 2005, vol. 34, no. 1, p.1.CrossRefGoogle Scholar
- 9.Avtaeva, S., General, A., and Kel’man, V., J. Phys. D: Appl. Phys., 2010, vol. 43, p. 315201.CrossRefGoogle Scholar
- 10.Polyakov, O.V., Badalyan, A.M., and Bakhturova, L.F., High Energy Chem., 2003, vol. 37, no. 5, p.322.CrossRefGoogle Scholar
- 11.Maksimov, A.I. and Nikiforov, A.Yu., High Energy Chem., 2007, vol. 41, no. 6, p.454.CrossRefGoogle Scholar
- 12.Medodovic, S. and Locke, B., J. Phys. D: Appl. Phys., 2009, vol. 42, p. 049801.CrossRefGoogle Scholar
- 13.Rehman, F., Lozano-Parada, J.H., and Zimmerman, W.B., Int. J. Hydrogen Energy, 2012, vol. 37, p. 17678.CrossRefGoogle Scholar
- 14.Hagelaar, G.J.M. and Pitchford, L.C., Plasma Sources Sci. Technol., 2005, vol. 14, p.722.CrossRefGoogle Scholar
- 15.Lozano-Parada, J.H. and Zimmerman, W.B., Chem. Eng. Sci., 2010, vol. 65, no. 17, p. 4925.CrossRefGoogle Scholar
- 16.www.comsol.com.Google Scholar
- 17.www.kinetics.nist.gov.Google Scholar
- 18.Ardelyan, N.V., Bychkov, V.L., Bychkov, D.V., and Kosmachevskii, K.V., Plasma Assisted Combustion, Gasification and Pollution Control, Matveev, I.D., Ed., Denver, Colo.: Outskirts, 2013, vol. 1, p. 183.Google Scholar
Copyright information
© Pleiades Publishing, Ltd. 2018