, Volume 52, Issue 5, pp 531–563 | Cite as

Devonian Island-Arc Magmatism of the Voikar Zone in the Polar Urals

  • I. D. SobolevEmail author
  • A. A. Soboleva
  • O. V. Udoratina
  • D. A. Varlamov
  • J. K. Hourigan
  • V. B. Khubanov
  • M. D. Buyantuev
  • D. A. Soboleva


The studied deep-seated plutonic rocks of the Malyi Ural Paleozoic island arc include Sob’ gabbroid, diorite, and plagiogranitoid and Kongor gabbroid, diorite, and monzonitoid, which formed under similar P–T conditions. U–Pb LA-ICP-MS zircon dating established similar concordant age values: 406 ± 2 Ma for hornblende gabbrodiorite of the major intrusive phase in the Sob’ complex and 396 ± 1 and 393 ± 2 Ma for bipyroxene gabbrodiorite of the early and major phases in the Kongor complex. Our age data have made it possible to determine the formation time of the Kongor complex as Late Emsian–Early Eifelian (399–393 Ma). The largest volumes of island-arc igneous rocks belonging to the calc-alkali gabbro–diorite–tonalite–plagiogranite series formed in the Praghian–Early Eifelian (410–393 Ma). The Late Emsian–Early Eifelian (399–393 Ma) was characterized by the development of much smaller bodies consisting of Kongor rocks pertaining to the calc-alkali and high-K calk-alkali range, gradually transitioning into shoshonite–latite. High-K rocks formed upon completion of calc-alkali magmatism, likely due to the gradual decay of Devonian suprasubduction magmatism and partial melting in magma generation or due to the involvement of a second magma source.


Malyi Ural island arc paleotectonic reconstructions U–Pb geochronology zircon Early Devonian Polar Urals monzodiorite diorite gabbronorite Kongor complex Sob’ complex 



We thank V.O. Yapaskurt (Faculty of Geology, Moscow State University, Moscow) for microprobe analysis of zircon grains.The work was supported by the Russian Science Foundation (project no. 16-17-10251).


  1. 1.
    V. L. Andreichev, “Rb–Sr geochronology of granitoid magmatism in the Voikar volcanoplutonic belt,” in Regularities of the Earth’s Crust Evolution: Abstracts of the International Conference on the 60th Anniversary of the Research Institute of the Earth’s Crust (St. Petersburg Univ., St. Petersburg, 1996), Vol. II, pp. 11–28.Google Scholar
  2. 2.
    V. L. Andreichev, Isotope Geochronology of Ultramafic–Mafic and Granitoid Associations on he eastern Slope of the Polar Urals (Geoprint, Syktyvkar, 2004) [in Russian].Google Scholar
  3. 3.
    V. L. Andreichev and O. V. Udoratina, “New data on the age of granitoids in the Kongor complex, (the Polar Urals),” in Isotope Dating of Geological Processes: New Methods and Results. Abstracts of the I Russian Conference on Isotope Geochronology (GEOS, Moscow, 2000), pp. 28–30.Google Scholar
  4. 4.
    M. A. Afanas’eva, N. Yu. Bardina, O. A. Bogatikov, I. I. Veshnevskaya, V. N. Gavrilova, M. N. Gurova, V. I. Kovalenko, N. N. Kononkova, L. N. Lipchanskaya, V. B. Naumov, V. S. Popov, V. I. Chernov, E. V. Sharkov, B. P. Yurgenson, and V. V. Yarmolyuk, Petrography and Petrology of Igneous, Metamorphic, and Metasomatic Rocks (Logos, Moscow, 2001) [in Russian].Google Scholar
  5. 5.
    Yu. A. Balashov and S. G. Skublov, “Contrasting geochemistry of magmatic and secondary zircons,” Geochem. Int. 49, 622–633 (2011).CrossRefGoogle Scholar
  6. 6.
    V. V. Bochkarev and R. G. Yazeva, Subalkaline Magmatism of the Urals (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2000) [in Russian].Google Scholar
  7. 7.
    M. I. Buyakaite, V. I. Vinogradov, V. N. Kuleshov, B. G. Pokrovskii, A. A. Savel’ev, and G. N. Savel’eva, Geochemistry of Isotopes in Ophiolites of the Polar Urals, Vol. 376 of Tr. Geol. Inst. Akad. Nauk SSSR (Nauka, Moscow, 1983) [in Russian].Google Scholar
  8. 8.
    I. V. Vikentyev, R. Kh. Mansurov, Yu. N. Ivanova, E. E. Tyukova, I. D. Sobolev, V. D. Abramova, R. I. Vykhristenko, A. P. Trofimov, V. B. Khubanov, E. O. Groznova, S. S. Dvurechenskaya, and S. G. Kryazhev, “Porphry-style Petropavlovskoe gold deposit, the Polar Urals: Geological position, mineralogy, and formation conditions,” Geol. Ore Deposits 59, 482–520 (2017). doi 10.1134/S1075701517060058CrossRefGoogle Scholar
  9. 9.
    Geological Map of the USSR and Adjacent Water Areas, Scale 1 : 2 500 000, Ed. by D. V. Nalivkin (VSEGEI, Leningrad, 1983).Google Scholar
  10. 10.
    V. A. Dedeev, “Facies and Middle Paleozoic geological history of the Polar Urals’ eastern slope,” in Collection of Papers in Geology, Vol. 131 of Tr. Vseross. Neft. Nauchno-Issled. Geologorazved. Inst. (VNIGRI, Leningrad, 1959), pp. 111–137.Google Scholar
  11. 11.
    A. B. Dergunov, A. P. Kazak, and Yu. E. Moldavantsev, “Serpentinite mélange and structural position of the Rai-Iz hyperbasite massif, Polar Urals,” Geotektonika, No. 1, 28−34 (1975).Google Scholar
  12. 12.
    N. L. Dobretsov, Yu. E. Moldavantsev, A. P. Kazak, L. G. Ponomarev, G. N. Savel'eva, and A. A. Savel’ev, Petrology and Metamorphism of Ancient Ophiolites: Case Study of the Polar Urals and West Sayan Mountains, Ed. by V. S. Sobolev and N. L. Dobretsov (Nauka, Novosibirsk, 1977) [in Russian].Google Scholar
  13. 13.
    V. A. Dushin, O. P. Serdyukova, A. A. Malyugin, et al., State Geological Map of Russian Federation, Scale 1 : 200 000, Polar Urals Series, Sheet Q-42-VII, VIII (Obskoi). Explanatory Note, Ed. by A. P. Kazak (VSEGEI, St. Petersburg, 2014), 2nd ed. [in Russian].Google Scholar
  14. 14.
    L. I. Zyleva, A. L. Konovalov, A. P. Kazak, et al., State Geological Map of Russian Federation, Scale 1 : 1 000 000 (Third Generation), West Siberian Series, Sheet Q-42 (Salekhard). Explanatory Note, Ed. by A. V. Zhdanov (VSEGEI, St. Petersburg, 2014) [in Russian].Google Scholar
  15. 15.
    N. B. Kuznetsov and T. V. Romanyuk, “Time-Interval of existing of oceanic-type Voykar paleobasin with connection of paleozoic evolution of Polar Urals,” Byull. Mosk. O-va. Ispyt. Prir., Otd. Geol. 89 (5), 56−70 (2014).Google Scholar
  16. 16.
    N. B. Kuznetsov, O. V. Udoratina, and V. L. Andreichev, “Paleozoic isotopic rejuvenation of pre-Uralides complexes and evolution of the eastern margin of the East European continent in the Paleozoic,” Vestn. Voronezh. Gos. Univ. Ser. Geol., No. 9, 15–19 (2000).Google Scholar
  17. 17.
    N. P. Lupanova and V. V. Markin, Greenschist Sequences of the Sob’–Voikar synclinorium, Eastern Slope of the Polar Urals, Vol. XII of Tr. Geol. Muzeya im. A.P. Karpinskogo Akad. Nauk SSSR (Nauka, Moscow, 1964) [in Russian].Google Scholar
  18. 18.
    R. Kh. Mansurov, “Structure of mineralized zones at the Petropavlovskoe gold-porphyry deposit, Polar Urals,” Vestn. Perm. Univ. 4 (33), 49–69 (2016).Google Scholar
  19. 19.
    Yu. E. Moldavantsev, “Association of effusive and metamorphic rocks from the Variscan eugeosyncline in the northern Urals and the problems of its tectonomagmatic evolution,” in Magmatism, Metamorphism, and Metallogeny of North Urals and Pay Khoy, Ed. by N. P. Yushkin (Inst. Geol. Komi Fil. Akad. Nauk SSSR, Syktyvkar, 1972), pp. 19–27.Google Scholar
  20. 20.
    V. N. Okhotnikov, Granitoids and Ore-Formation: Case Study of the Polar Urals (Nauka, Leningrad, 1985) [in Russian].Google Scholar
  21. 21.
    B. V. Perevozchikov, “Genetic types of gabbroids in the southern framing of the Rai-Iz massif,” in Geology and Mineral Resources of Subpolar and Polar Urals, Vol. 74 of Tr. ZapSibNIGNI, Ed. by A. I. Podsosov (ZapSibNIGNI, Tyumen, 1974), pp. 49–58.Google Scholar
  22. 22.
    Petrographic Code of Russia: Igneous, Metamorphic, Metasomatic, and Impact Units (VSEGEI, St. Petersburg, 2008), 2nd ed. [in Russian].Google Scholar
  23. 23.
    A. P. Pryamonosov, A. E. Stepanov, V. V. Grigor’ev, et al., State Geological Map of Russian Federation, Scale 1 : 200 000, Polar Urals Series, Sheet Q-41-XII (VSEGEI, St. Petersburg, 2001), 2nd ed.Google Scholar
  24. 24.
    A. P. Pryamonosov, A. E. Stepanov, T. V. Telegina, et al., State Geological Map of Russian Federation, Scale 1 : 200 000, Polar Urals Series, Sheet Q-41-XII. Explanatory Note (VSEGEI, St. Petersburg, 2001), 2nd ed. [in Russian].Google Scholar
  25. 25.
    V. N. Puchkov, Geology of the Urals and Cis-Uralian Region: Topical Problems of Stratigraphy, Tectonics, Geodynamics, and Metallogeny (DizainPoligrafServis, Ufa, 2010) [in Russian].Google Scholar
  26. 26.
    V. N. Puchkov, O. M. Rosen, D. Z. Zhuravlev, and E. V. Bibikova, “Contamination of Silurian volcanic rocks in the Tagil synform by Precambrian zircon,” Dokl. Earth Sci. 411, 1381–1384 (2006).CrossRefGoogle Scholar
  27. 27.
    D. N. Remizov, Island Arc System of the Polar Urals: Petrology and Evolution of Deep Zones (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2004) [in Russian].Google Scholar
  28. 28.
    D. N. Remizov, S. I. Grigor’ev, S. Yu. Petrov, M. V. Nosikov, A. O. Kos'yanov, and M. N. Petrova, “Magmatism of the Lesser Uralian arc, Polar Urals,” in Geology and Mineral Resources of the Northeastern European Part of Russia: Proceedings of the XV Geological Meeting of Komi Republic, Ed. by N. P. Yushkin. (Geoprint, Syktyvkar, 2009), Vol. II, pp. 322–324.Google Scholar
  29. 29.
    D. N. Remizov, S. I. Grigoriev, S. Yu. Petrov, A. O. Kos’yanov, M. V. Nosikov, and S. A. Sergeev, “New age datings of gabbroids of the Kershor complex (Polar Urals),” Dokl. Earth Sci. 434, 1235–1239 (2010).CrossRefGoogle Scholar
  30. 30.
    D. N. Remizov, S. I. Grigor’ev, and S. T. Remizova, “Voikar arc system of the Polar Urals,” in Magmatism and Metamorphism in the Earth’s History: Proceeding of the XI All-Russia Petrographic Meeting, Ed. by V. A. Koroteev (Inst. Geol. Geokhim. Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2010), pp. 172–173.Google Scholar
  31. 31.
    D. N. Remizov, M. A. Shishkin, S. I. Grigor’ev, et al., State Geological Map of Russian Federation, Scale 1 : 200 000, Polar Urals Series, Sheet Q-41-XVI (Mt. Khord"yus). Explanatory Note, Ed. by M. A. Shishkin (VSEGEI, St. Petersburg, 2014), 2nd ed. [in Russian].Google Scholar
  32. 32.
    D. N. Remizov, M. A. Shishkin, S. I. Grigor’ev, et al., State Geological Map of Russian Federation, Scale 1 : 200 000, Polar Urals Series, Sheet Q-41-XVII (Tan’yu River). Explanatory Note, Ed. by M. A. Shishkin (VSEGEI, St. Petersburg, 2014) [in Russian].Google Scholar
  33. 33.
    D. N. Remizov, M. A. Shishkin, S. I. Grigor’ev, et al., State Geological Map of Russian Federation, Scale 1 : 200 000, Polar Urals Series, Sheet Q-41-XXI, XXII (Evyrgort). Explanatory Note, Ed. by M. A. Shishkin (VSEGEI, St. Petersburg, 2015), 2nd ed. [in Russian].Google Scholar
  34. 34.
    A. A. Savel’ev and G. N. Savel’eva, “Ophiolites of the Voikaro-Syn’ya massif, Polar Urals,” Geotektonika, No. 6, 46–60 (1977).Google Scholar
  35. 35.
    G. N. Savel’eva, Gabbro-Ultrabasite Complexes of Uralian Ophiolites and Their Analogs in Present-Day Oceanic Crust (Nauka, Moscow, 1987) [in Russian].Google Scholar
  36. 36.
    S. G. Samygin and V. S. Burtman, “Tectonics of the Ural Paleozoides in comparison with the Tien Shan,” Geotectonics 43, 133–151 (2009).CrossRefGoogle Scholar
  37. 37.
    N. A. Sirin, Magmatism of the Subpolar and Polar Urals (Gosgeoltekhizdat, Moscow, 1962) [in Russian].Google Scholar
  38. 38.
    I. D. Sobolev, A. A. Soboleva, and D. A. Varlamov, “Age of monzodiorite porphyries from the late dike phase of the Kongor Pluton, (the Polar Urals) according to the results of U-Pb (SIMS) dating of zircons,” Vestn. Inst. Geol. Komi Nauchn. Tsentra Ural. Otd. Ross. Akad. Nauk, No. 12, 16–24 (2017). doi 10.19110/2221-1381-2017-12-16-24Google Scholar
  39. 39.
    I. D. Sobolev, A. A. Soboleva, O. V. Udoratina, T. A. Kaneva, K. V. Kulikova, I. V. Vikent’ev, V. B. Khubanov, M. D. Buyantuev, and Dzh. K. Khourigan, “First results of U–Pb (LA-ICP-MS) dating of detrital zircons from Paleozoic island arc clastic rocks of the Polar Urals,” Byull. Mosk. O-va. Ispyt. Prir., Otd. Geol. 92 (4), 3–26 (2017).Google Scholar
  40. 40.
    I. D. Sobolev, O. V. Udoratina, and Ts. Gen, “Age and isotope-geochemical characetirstics of the Kongor complex diorites (Diorite Pluton, the Polar Urals),” in Geology, Geoecology, and Resource Potential of the Urals and Adjacent Territories: Collection of Papers of the V All-Russia Geological Youth Conference, Ed. by F. R. Ardislamov (Al’fa-reklama, Ufa, 2017), pp. 132–139.Google Scholar
  41. 41.
    A. V. Soloviev, A. V. Zaionchek, O. I. Suprunenko, H. Brekke, J. I. Faleide, D. V. Rozhkova, A. I. Khisamutdinova, N. M. Stolbov, and J. K. Hourigan, “Evolution of the provenances of Triassic rocks in Franz Josef Land: U/Pb LA-ICP-MS dating of the detrital zircons from well Severnaya,” Lithol. Miner. Resour. 50, 102–116 (2015). doi 10.1134/S0024490215020054CrossRefGoogle Scholar
  42. 42.
    V. D. Starkov, Intrusive Magmatism of Eugeosyncline Zones of the Polar Urals (Ural. Nauchn. Tsentr Akad. Nauk SSSR, Sverdlovsk, 1985) [in Russian].Google Scholar
  43. 43.
    O. V. Udoratina and N. B. Kuznetsov, “Sob’ plagiogranite complex in the Polar Urals,” Byull. Mosk. O-va. Ispyt. Prir., Otd. Geol. 82 (3), 49–59 (2007).Google Scholar
  44. 44.
    O. V. Udoratina, N. B. Kuznetsov, A. N. Larionov, and M. A. Shishkin, “U–Pb age of plagiogranitoids of the Sob’ Pluton, polar Urals,” in Vol. 5 of Petrology and Mineralogy of North Urals and Timan Range, Ed. by L. V. Makhlaev and A. F. Khazov (Geoprint, Syktyvkar, 2008), pp. 52–62.Google Scholar
  45. 45.
    V. B. Khubanov, M. D. Buyantuev, and A. A. Tsygankov, “U–Pb dating of zircons from PZ3-MZ igneous complexes of Transbaikalia by sector-field mass-spectrometry with laser sampling: Technique and comparison with SHRIMP,” Russ. Geol. Geophys. 57. 190–205 (2016). doi 10.1016/j.rgg.2016.01.013CrossRefGoogle Scholar
  46. 46.
    L. N. Sharpenok, A. E. Kostin, and E. A. Kukharenko, “TAS-diagram of total alkali–silica for chemical classification and diagnostics of plutonic rocks,” Reg. Geol. Metallog., No. 56, 40–50 (2013).Google Scholar
  47. 47.
    M. A. Shishkin, A. P. Astapov, N. V. Kabatov, et al., State Geological Map of Russian Federation, Scale 1 : 1 000 000 (Third Generation), Uralian Series, Sheet Q-41 (Vorkuta). Explanatory Note, Ed. by V. P. Vodolazskaya (VSEGEI, St. Petersburg, 2007) [in Russian].Google Scholar
  48. 48.
    M. A. Shishkin and S. Yu. Petrov, State Geological Map of Russian Federation, Scale 1 : 200 000, Polar Urals Series, Sheet Q-41-XVII (Tan’yu River), Ed. by M. A. Shishkin (VSEGEI, St. Petersburg, 2014), 2nd ed.Google Scholar
  49. 49.
    R. G. Yazeva and V. V. Bochkarev, Voikar Volcanoplutonic Belt of the Polar Urals (Ural. Nauchn. Tsentr Akad. Nauk SSSR, Sverdlovsk, 1984) [in Russian].Google Scholar
  50. 50.
    V. L. Andreichev, “Geochronology of metamorphic and magmatic processes in the crustal evolution of the Polar Urals,” in Intas-Europrobe Timpebar-Uralides Workshop (Geotryckeriet, St. Petersburg, 2000), p. 1.Google Scholar
  51. 51.
    L. P. Black, S. L. Kamo, C. M. Allen, D. W. Davis, J. N. Aleinikoff, J. W. Valley, R. Mundil, I. H. Campbell, R. J. Korsch, I. S Williams, and C. Foudoulis, “Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards,” Chem. Geol. 205, 115–140 (2004). doi 10.1016/j.chemgeo.2004.01.003CrossRefGoogle Scholar
  52. 52.
    S. Estrada, F. Henjes-Kunst, K. P. Burgath, N. W. Roland, F. Shäfer, E. V. Khain, and D. Remizov, “Insights into the magmatic and geotectonic history of the Voikar Massif, Polar Urals,” Z. Dtsch. Ges. Geowiss. 163, 9–41 (2012). doi 10.1127/1860-1804/2012/0163-0009Google Scholar
  53. 53.
    M. D. Foster, Interpretation of the Composition of Trioctahedral Micas, Geol. Surv. Prof. Pap. 354-B (U.S. Gov. Print. Office, Washington, D.C., 1960).Google Scholar
  54. 54.
    W. L. Griffin, W. J. Powell, N. J. Pearson, and S. Y. O’Reilly, “GLITTER: Data reduction software for laser ablation ICP-MS,” in Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, Vol. 40 of Short Course Ser.—Mineral. Assoc. Can., Ed. P. J. Sylvester (2008), pp. 308–311.Google Scholar
  55. 55.
    T. M. Harrison, “Diffusion of 40Ar* in hornblende,” Contrib. Mineral. Petrol. 78, 324–331 (1981).CrossRefGoogle Scholar
  56. 56.
    T. M. Harrison, I. Duncan, and I. McDougall, “Diffusion of 40Ar* in biotite – temperature, pressure and compositional effects,” Geochem. Cosmochem. Acta 49, 2461–2468 (1985).CrossRefGoogle Scholar
  57. 57.
    K. V. Hodges, “Geochronology and thermochronology in orogenic systems,” in Treatise on Geochemistry (Elsevier, Oxford, U.K., 2004), Vol. 3, pp. 263–292.Google Scholar
  58. 58.
    P. W. O. Hoskin and U. Schaltegger, “The composition of zircon and igneous and metamorphic petrogenesis,” Rev. Mineral. Geochem. 53, 27–62 (2003).CrossRefGoogle Scholar
  59. 59.
    M. C. Johnson and M. J. Rutherford, “Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks,” Geology 17, 837–841 (1989).CrossRefGoogle Scholar
  60. 60.
    R. W. Le Maitre, P. Bateman, A. Dudek, et al., Classification of Igneous Rocks and Glossary of Terms. Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks (Blackwell, Oxford, 1989).Google Scholar
  61. 61.
    B. E. Leake, A. R. Wooley, C. E. S. Arps, W. D. Birch, M. C. Gilbert, J. D. Grice, F. C. Hawthorne, A. Kato, H. J. Kisch, V. G. Krivovichev, K. Linthout, J. Laird, J. A. Mandarino, W. V. Maresch, E. H. Nickel, et al., “Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names,” Can. Mineral. 35, 219–246 (1997).Google Scholar
  62. 62.
    K. R. Ludwig, User’s Manual for Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel, No. 5 of Berkeley Geochronology Center Special Publication (Berkeley Geochronol. Center, Berkeley, Calif., 2012). http://www.bgc. org/isoplot_etc/isoplot/Isoplot3_75-4_15manual.pdf. Accessed July 1, 2017.Google Scholar
  63. 63.
    N. Morimoto, J. Fabries, A. K. Ferguson, I. V. Ginzburg, M. Ross, F. A. Seifert, J. Zussman, K. Aoki, and G. Gottardi, “Nomenclature of pyroxenes. Subcommittee on Pyroxenes Commission on New Minerals and Mineral Names. International Mineralogical Association,” Am. Mineral. 73, 1123–1133 (1988).Google Scholar
  64. 64.
    C. Paton, J. D. Woodhead, J. C. Hellstrom, J. M. Hergt, A. Greig, and R. Maas, “Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction,” Geochem., Geophys., Geosyst. 11 (2010). doi 10.1029/2009GC002618Google Scholar
  65. 65.
    A. Peccerillo and S. R. Taylor, “Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area (northern Turkey),” Contrib. Mineral. Petrol. 58, 63–81 (1976).CrossRefGoogle Scholar
  66. 66.
    F. Ridolfi, A. Renzulli, and M. Puerini, “Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes,” Contrib. Mineral. Petrol. 160, 45–66 (2010).CrossRefGoogle Scholar
  67. 67.
    G. R. Sharman, S. A. Graham, M. Grove, “A reappraisal of the early slip history of the San Andreas fault, central California, USA,” Geology. 41, 727–730 (2013). doi 10.1130/G34214.1CrossRefGoogle Scholar
  68. 68.
    J. Sláma, J. Kosler, D. J. Condon, J. L. Crowley, A. Gerdes, J. M. Hanchar, M. S. A. Horstwood, G. A. Morris, L. Nasdala, N. Norberg, U. Schaltegger, B. Schoene, M. N. Tubrett, and M. J. Whitehouse, “Plesovice zircon – A new natural reference material for U–Pb and Hf isotopic microanalysis,” Chem. Geol. 249, 1–35 (2008).CrossRefGoogle Scholar
  69. 69.
    S. G. Soloviev, S. G. Kryazhev, and S. S. Dvurechenskaya, “Geology, mineralization, stable isotope geochemistry, and fluid inclusion characteristics of the Novogodnee-Monto oxidized Au-(Cu) skarn and porphyry deposit, Polar Ural, Russia,” Mineral. Deposita 48, 603–627 (2013). doi 10.1007/s00126-012-0449-9CrossRefGoogle Scholar
  70. 70.
    J. S. Stacey and J. D. Kramers, “Approximation of terrestrial lead isotope evolution by a two-stage model,” Earth Planet. Sci. Lett. 26, 207–221 (1975).CrossRefGoogle Scholar
  71. 71.
    R. A. Stern, “The GSC Sensitive High Resolution Ion Microprobe (SHRIMP): Analytical techniques of zircon U–Th–Pb age determinations and performance evaluation,” in Radiogenic Age and Isotopic Studies: Report 10, Geol. Surv. Can. Current Res. No. 1997–F (1997), pp. 1–31.Google Scholar
  72. 72.
    S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Vol. 42 of Geol. Soc. London, Spec. Publ., Ed. by A. D. Saunders and M. J. Norry (London, 1989), pp. 313–345.Google Scholar
  73. 73.
    E. Van Achterbergh, C. G. Ryan, S. E. Jackson, et al. “Appendix 3. Data reduction software for LA-ICP-MS,” in LA-ICP-MS in the Earth Sciences: Principles and Applications, Vol. 29 of Short Course Ser.—Mineral. Assoc. Can., Ed. by P. J. Sylvester (2001), pp. 239–243.Google Scholar
  74. 74.
    M. Wiedenbeck, P. Allé, F. Corfu, and W. Spiegel, “Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses,” Geostand. Geoanal. Res. 19 (1), 1–23 (1995).CrossRefGoogle Scholar
  75. 75.
    I. S. Williams, “U–Th–Pb Geochronology by Ion Microprobe,” in Applications of Microanalytical Techniques to Understanding Mineralizing Processes, Vol. 7 of Rev. Econ. Geol., Ed. by M. A. McKibben, W. C. Shanks III, and W. I. Ridley (1998), pp. 1–35.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • I. D. Sobolev
    • 1
    • 2
    Email author
  • A. A. Soboleva
    • 3
  • O. V. Udoratina
    • 3
  • D. A. Varlamov
    • 4
  • J. K. Hourigan
    • 5
  • V. B. Khubanov
    • 6
  • M. D. Buyantuev
    • 6
  • D. A. Soboleva
    • 7
  1. 1.Institute of Geology, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of SciencesMoscowRussia
  3. 3.Komi Research Center, Ural Branch, Russian Academy of SciencesSyktyvkarRussia
  4. 4.Institute of Experimental Mineralogy, Russian Academy of SciencesChernogolovkaRussia
  5. 5.University of CaliforniaSanta CruzUSA
  6. 6.Geological Institute, Siberian Branch, Russian Academy of SciencesUlan-UdeRussia
  7. 7.Schmidt Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia

Personalised recommendations