Advertisement

Geomagnetism and Aeronomy

, Volume 59, Issue 5, pp 612–622 | Cite as

Geomagnetic Variations during the Fall of Meteorites

  • A. A. SpivakEmail author
  • S. A. RiabovaEmail author
Article
  • 10 Downloads

Abstract

The results of instrumental observations of variations in the Earth’s magnetic field conducted at a number of observatories of the INTERMAGNET network and the Mikhnevo geophysical observatory of Institute of Geosphere Dynamics of Russian Academy of Sciences, during the fall of meteorites have been analyzed. The Vitim (September 24, 2002), Chelyabinsk (February 15, 2013), Romania (January 7, 2015), Buryatia (October 25, 2016), Khakassia (December 6, 2016), St. Petersburg (September 11, 2017), and Lipetsk (June 21, 2018) events have been used to show the geomagnetic effect of falling cosmic bodies. The effect has a nonlocal character, occurs simultaneously, and is observed at distances up to 7000 km from the location of falling cosmic bodies. The amplitude of induced geomagnetic variations has been found to depend weakly on the distance to the event location. The resulting data can be used to verify theoretical and computational models of the geophysical processes accompanying the fall of meteorites.

Notes

FUNDING

This study was supported by the Presidium of the Russian Academy of Sciences, Basic Research Program no. 19 “Basic Problems in Geological and Geophysical Studies of Lithospheric Processes.”

REFERENCES

  1. 1.
    Adushkin, V.V. and Nemchinov, I.V., Consequences of impacts of cosmic bodies on the surface of the Earth, Hazards due to Comets and Asteroids, Gehrels, T., Ed., Tucson: University of Arizona Press, 1994, pp. 721–778.Google Scholar
  2. 2.
    Adushkin, V.V. and Spivak, A.A., Fizicheskie polya v pripoverkhnostnoi geofizike (Physical Fields in Near-Surface Geophysics), Moscow: GEOS, 2014.Google Scholar
  3. 3.
    Adushkin, V.V., Popova, O.P., Rybnov, Yu.S., Kudryavtsev, V.I., Mal’tsev, A.L., and Kharlamov, V.A., Geophysical effects of the Vitim bolide, Dokl. Earth Sci., 2004, vol. 397, no. 6, pp. 861–864.Google Scholar
  4. 4.
    Adushkin, V.V., Rybnov, Yu.S., Spivak, A.A., and Kharlamov, V.A., Evaluation of the energy sources of infrasound disturbances in the atmosphere from waveform spectra, Triggernye effekty v geosistemakh (Trigger Effects in Geosystems), Moscow: GEOS, 2017, pp. 416–426.Google Scholar
  5. 5.
    Asteroidno–kometnaya opasnost’: vchera, segodnya, zavtra (Asteroid–Comet Hazard: Past, Present, and Future), Shustov, B.M. and Rykhlova, L.V., Eds., Moscow: Fizmatlit, 2010.Google Scholar
  6. 6.
    Beech, M. and Foschini, L.A., A space charge model for electrophonic bursters, Astron. Astrophys., 1999, vol. 345, pp. L27–L31.Google Scholar
  7. 7.
    Berngardt, O.I., Dobrynina, A.A., Zherebtsov, G.A., Mikhalev, A.V., Perevalova, N.P., Ratovskii, K.G., Rakhmatullin, R.A., San’kov, V.A., and Sorokin, A.G., Geophysical phenomena accompanying the Chelyabinsk meteoroid impact, Dokl. Earth Sci., 2013, vol. 452, no. 1, pp. 945–947.CrossRefGoogle Scholar
  8. 8.
    Binzel, R.P., The Torino impact hazard scale, Planet. Space Sci., 2000, vol. 48, pp. 297–303.CrossRefGoogle Scholar
  9. 9.
    Borovička, J., Spurný, P., and Grigore, V.I., The January 7, 2015, superbolide over Romania and structural diversity of meter-sized asteroids, Planet. Space Sci., 2017, vol. 143, pp. 147–158.CrossRefGoogle Scholar
  10. 10.
    Bronshten, R.P., A magnetohydrodynamic mechanism for generating radio waves by bright fireballs, Sol. Syst. Res., 1983, vol. 17, pp. 70–74.Google Scholar
  11. 11.
    Bronshten, V.A., Electrical and electromagnetic phenomena associated with the meteor flight, Sol. Syst. Res., 1991, vol. 25, pp. 93–104.Google Scholar
  12. 12.
    Bronshten, V.A., Magnetic effect of the Tungus meteorite, Geomagn. Aeron. (Engl. Transl.), 2002, vol. 42, no. 6, pp. 816–818.Google Scholar
  13. 13.
    Chernogor, L.F., Physical processes accompanying the flight of the Vitim bolide on September 24, 2002, Vestn. Astron. Shk., 2009, vol. 6, no. 1, pp. 30–43.Google Scholar
  14. 14.
    Chernogor, L.F., Geomagnetic effect of launches and flights of large spacecraft, Cosmic Res., 2013, vol. 51, no. 6, pp. 413–426.CrossRefGoogle Scholar
  15. 15.
    Chernogor, L.F., Magnetospheric effects during the approach of the Chelyabinsk meteoroid, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 2, pp. 252–265.Google Scholar
  16. 16.
    Dubrov, A.M., Mnogomernye statisticheskie metody: uchebnik dlya studentov ekonomicheskikh spetsial’nostei vysshikh uchebnykh zavedenii (Multidimensional Statistical Methods: A Textbook for Students of Economic Specialties of Higher Educational Institutions), Moscow: Finansy i statistika, 2003.Google Scholar
  17. 17.
    Emel’yanenko, V.V., Popova, O.P., Chugai, N.N., et al., Astronomical and physical aspects of the Chelyabinsk event (February 15, 2013), Sol. Syst. Res., 2013, vol. 47, no. 4, pp. 240–254.CrossRefGoogle Scholar
  18. 18.
    Grachev, A.V., On the recovery of gaps in experimental data, Vestn. NNGU im. N. I. Lobachevskogo: Ser. Radiofiz., 2004, no. 2, pp. 15–23.Google Scholar
  19. 19.
    Gvishiani, A.D. and Lukianova, R.Yu., Geoinformatics and observations of the Earth’s magnetic field: The Russian segment, Izv., Phys, Solid Earth, 2015, vol. 51, no. 2, pp. 157–175.CrossRefGoogle Scholar
  20. 20.
    Hoaglin, D.C., Mosteller, F., and Tukey, J.W., Understanding Robust and Exploratory Data Analysis, New York: John Wiley and Sons, 2000.Google Scholar
  21. 21.
    Ivanov, K.G., Geomagnetic phenomena observed at the Irkutsk magnetic observatory after the Tungus meteorite fall, Meteoritika, 1961, no. 21, pp. 46–48.Google Scholar
  22. 22.
    Katastroficheskie vozdeistviya kosmicheskikh tel (Catastrophic Impact of Space Bodies), Adushkin, V.V. and Nemchinov, I.V., Eds., Moscow: Akademkniga, 2005.Google Scholar
  23. 23.
    Keay, C.S.L., Electrophonic sounds from large meteor fireballs, Meteoritics, 1992, vol. 27, pp. 144–148.CrossRefGoogle Scholar
  24. 24.
    Kerridge, D., Intermagnet: worldwide near-real-time geomagnetic observatory data, Proc. Workshop on Space Weather ESTEC, 2001.Google Scholar
  25. 25.
    Kovaleva, I.Kh., Kovalev, A.T., Popova, O.P., et al., Electromagnetic effects generated in the Earth’s ionosphere during the fall of meteorites, Din. Protsessy Geosferakh, 2014, vol. 5, pp. 26–47.Google Scholar
  26. 26.
    Kuz’micheva, M.Yu. and Loseva, T.V., Assessment of the geomagnetic effect during the Tungus event of 1908, Dinamicheskie protsessy v geosferakh (Dynamic Processes in Geospheres), Moscow: GEOS, 2010, pp. 261–269.Google Scholar
  27. 27.
    Kuz’micheva, M.Yu. and Loseva, T.V., Global ionospheric effects caused by the Chelyabinsk event of February 15, 2013, Dinamicheskie protsessy v geosferakh (Dynamic Processes in Geospheres), Moscow: GEOS, 2013, vol. 4, pp. 32–41.Google Scholar
  28. 28.
    Kuz’micheva M.Yu., Loseva T.V., Lyakhov A.N. Ionosfernyi effekt Chelyabinskogo sobytiya, Dinamicheskie protsessy v geosferakh (Dynamic Processes in Geospheres), Moscow: GEOS, 2014, vol. 5, pp. 86–95.Google Scholar
  29. 29.
    Nemchinov, I.V., Loseva, T.V., and Merkin, V.G., Assessment of the geomagnetic effect during the fall of the Tungus meteoroide, Fizicheskie protsessy v geosferakh: ikh proyavleniya i vzaimodeistvie (Physical Processes in Geospheres: Their Manifestations and Interaction), Moscow: IDG RAS, 1999, pp. 324–338.Google Scholar
  30. 30.
    Popova, O.P., Jenniskens, P., Emel’yanenko, V.V., et al., Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization, Science, 2013, vol. 342, pp. 1069–1073.CrossRefGoogle Scholar
  31. 31.
    Popova, O.P., Jenniskens, P., and Glazachev, D.O., Fragmentation of the Chelyabinsk meteoroid, Dinamicheskie protsessy v geosferakh (Dynamic Processes in Geospheres), Moscow: GEOS, 2014, vol. 5, pp. 59–78.Google Scholar
  32. 32.
    Price, C. and Blum, M., ELF/VLF radiation produced by the 1999 Leonid meteors, Earth, Moon, Planets, 2000, vols. 82–83, pp. 545–554.Google Scholar
  33. 33.
    Rybnov, Yu.S., Popova, O.P., and Kharlamov, V.A., Evaluation of the energy of the Chelyabinsk bolide from power spectra of long-period oscillations of atmospheric pressure, Dinamicheskie protsessy v geosferakh (Dynamic Processes in Geospheres), Moscow: GEOS, 2014, vol. 5, pp. 78–85.Google Scholar
  34. 34.
    Savchenko, Yu.N., Geomagnetic disturbances caused by shock waves of large meteoric bodies. I, Geomagn. Aeron., 1975, no. 6, pp. 1047–1053.Google Scholar
  35. 35.
    Savchenko, Yu.N., Geomagnetic disturbances caused by shock waves of large meteoric bodies. II, Geomagn. Aeron., 1976, no. 6, pp. 518–525.Google Scholar
  36. 36.
    Svettsov, V.V., Artem’eva, N.A., Popova, O.P., and Shuvalov, V.V., The fall of the Chelyabinsk meteorite as a typical event in the Earth’s history, Dinamicheskie protsessy v geosferakh (Dynamic Processes in Geospheres), Moscow: GEOS, 2014, vol. 5, pp. 7–20.Google Scholar
  37. 37.
    Tietjen, G.L. and Moore, R.H., Some Grubbs-type statistics for the detection of several outliers, Technometrics, 1972, vol. 14, pp. 583–597.CrossRefGoogle Scholar
  38. 38.
    Yazev, S.A. and Antipin, V.S., In the wake of the Vitim bolide, Zemlya Vselennaya, 2004, no. 5, pp. 59–72.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Geosphere Dynamics, Russian Academy of SciencesMoscowRussia

Personalised recommendations