Advertisement

Geomagnetism and Aeronomy

, Volume 59, Issue 5, pp 628–637 | Cite as

Effects in the Ionosphere after the Chilean Earthquake on February 27, 2010, According to Data of Ground-based Ionosondes

  • S. A. PulinetsEmail author
  • V. V. HegaiEmail author
  • A. D. LegenkaEmail author
  • L. P. KorsunovaEmail author
Article
  • 12 Downloads

Abstract

The paper analyzes the measurement data of the critical frequency (foF2) of the regular ionospheric F2-layer at a number of ground based stations of the vertical sounding of the ionosphere in order to detect disturbances in the ionosphere that followed the earthquake with a magnitude of M = 8.8. The earthquake occurred in Chile on February 27, 2010 at 0634 UT at an epicentral distance of 335 km from its capital city of Santiago. It was found that at significant distances (over 5000 km) from the earthquake epicenter under a quiet geomagnetic conditions, wave disturbances are observed in the behavior of foF2, exceeding approximately two standard deviations from the background level for three hours, with the maximum relative deviation of 20%. The analysis shows that the characteristics of disturbances in the ionosphere correspond in time to the arrival of a packet of acoustic-gravity waves excited in the atmosphere at the time of the seismic shock.

Notes

ACKNOWLEDGMENTS

The authors thank NOAA’s National Geophysical Data Center (NGDC) USA (NASA/GSFC’s Space Physics Data Facility for OMNIWeb service), whose ionospheric and magnetic data were used in this work, as well as the United States Geological Survey’s Access Earthquake Hazards Program to earthquake data.

REFERENCES

  1. 1.
    Astafyeva, E.I. and Afraimovich, E.L., Long-distance traveling ionospheric disturbances caused by the great Sumatra–Andaman earthquake on 26 December 2004, Earth Planets Space, 2006, vol. 58, no. 8, pp. 1025–1031.CrossRefGoogle Scholar
  2. 2.
    Astafyeva, E. and Heki, K., Vertical TEC over seismically active region during low solar activity, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, no. 13, pp. 1643–1652.CrossRefGoogle Scholar
  3. 3.
    Astafyeva, E., Heki, K., Kiryushkin, V., Afraimovich, E., and Shalimov, S., Two-mode long-distance propagation of coseismic ionosphere disturbances, J. Geophys. Res., 2009, vol. 114, A10307.  https://doi.org/10.1029/2008JA013853 CrossRefGoogle Scholar
  4. 4.
    Chen, C.H., Saito, A., Lin, J., Liu, J.-Y., Tsai, H.F., Tsugawa, T., Otsuka, Y., Nishioka, M., and Matsumura, M., Long-distance propagation of ionospheric disturbances generated by the 2011 Tohoku earthquake, Earth Planets Space, 2011, vol. 63, no. 7, pp. 881–884.CrossRefGoogle Scholar
  5. 5.
    Choosakul, N., Saito, A., Iyemori, T., and Hashizume, M., Excitation of 4-min periodic ionospheric variations following the great Sumatra–Andaman earthquake in 2004, J. Geophys. Res., 2009, vol. 114, A10313.  https://doi.org/10.1029/2008JA013915 CrossRefGoogle Scholar
  6. 6.
    Chum, J., Liu, J.-Y., Laštovička, J., Fišer, J., Mošna, Z., Baše, J., and Sun, Y.-Y., Ionospheric signatures of the April 25, 2015 Nepal earthquake and the relative role of compression and advection for Doppler sounding of infrasound in the ionosphere, Earth Planets Space, 2016, vol. 68, no. 24.  https://doi.org/10.1186/s40623-016-0401-9
  7. 7.
    Davies, K. and Baker, D.M., Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964, J. Geophys. Res., 1965, vol. 70, no. 9, pp. 2251–2253.CrossRefGoogle Scholar
  8. 8.
    Francis, S.H., Acoustic–gravity modes and large-scale traveling ionospheric disturbances of a realistic, dissipative atmosphere, J. Geophys. Res., 1973, vol. 78, no. 13, pp. 2278–2301.  https://doi.org/10.1029/JA078i013p02278 CrossRefGoogle Scholar
  9. 9.
    Francis, S.H., A theory of medium-scale traveling ionospheric disturbances, J. Geophys. Res., 1974, vol. 79, no. 34, pp. 5245–5260.  https://doi.org/10.1029/JA079i034p05245 CrossRefGoogle Scholar
  10. 10.
    Gokhberg, M.B. and Shalimov, S.L., Vozdeistvie zemletryasenii i vzryvov na ionosferu (Impact of Earthquakes and Explosions on the Ionosphere), Moscow: Nauka, 2008.Google Scholar
  11. 11.
    Gutenberg, B. and Richter, C.F., Magnitude and energy of earthquakes, Ann. Geophys., 1956, vol. 9, no. 1, pp. 1–15.Google Scholar
  12. 12.
    Hasbi, A.M., Momani, M., Ali, M., Misran, N., Shiokawa, K., Otsuka, Y., and Yumoto, K., Ionospheric and geomagnetic disturbances during the 2005 Sumatran earthquakes, J. Atmos. Sol.-Terr. Phys., vol. 71, nos. 17–18, pp. 1992–2005.  https://doi.org/10.1016/j.jastp.2009.09.004
  13. 13.
    Hegai, V.V., Kim, V.P., and Liu, J.-Y., The ionospheric effect of atmospheric gravity waves excited prior to strong earthquake, Adv. Space Res., 2006, vol. 37, no. 4, pp. 653–659.CrossRefGoogle Scholar
  14. 14.
    Hegai, V.V., Legen’ka, A.D., Kim, V.P., and Georgieva, K., Wave-like perturbations in the ionospheric F2-layer observed after the Ms8.1 Samoa earthquake of September 29, 2009, Adv. Space Res., 2011, vol. 47, no. 11, pp. 1979–1982. http://earthquake.usgs.gov/earthquakes/ eqarchives/year/eqstats.php#table_2.CrossRefGoogle Scholar
  15. 15.
    Klotz, S. and Johnson, N.L., Eds., Encyclopedia of Statistical Sciences, Hoboken, N.J.: John Wiley and Sons, 1983.Google Scholar
  16. 16.
    Leonard, R.S. and Barnes, R.A., Observation of ionospheric disturbances following the Alaskan earthquake, J. Geophys. Res., 1965, vol. 70, no. 5, pp. 1250–1253.CrossRefGoogle Scholar
  17. 17.
    Liang, J., Wan, W., and Yuan, H., Ducting of acoustic–gravity waves in a nonisothermal atmosphere around a spherical globe, J. Geophys. Res., 1998, vol. 103, pp. 11229–11234.  https://doi.org/10.1029/98JD0042 CrossRefGoogle Scholar
  18. 18.
    Liu, C.L. and Yeh, K.C., Excitation of acoustic–gravity waves in an isothermal atmosphere, Tellus, 1971, vol. 23, no. 2, pp. 150–163.CrossRefGoogle Scholar
  19. 19.
    Liu, C.H. and Klostermeyer, J., Excitation of acoustic–gravity waves in realistic thermosphere, J. Atmos. Terr. Phys., 1975, vol. 37, no. 8, pp. 1099–1108.CrossRefGoogle Scholar
  20. 20.
    Ma, J.Z.G., Atmospheric layers in response to the propagation of gravity waves under nonisothermal, wind-shear, and dissipative conditions, J. Mar. Sci. Eng., 2016, vol. 4, no. 1, id 25.  https://doi.org/10.3390/jmse4010025
  21. 21.
    Maeda, S., Numerical solutions of the coupled equations for acoustic–gravity waves in the upper thermosphere, J. Atmos. Terr. Phys., 1985, vol. 47, nos. 8–10, pp. 965–972.CrossRefGoogle Scholar
  22. 22.
    Maruyama, T., Yusupov, K., and Akchurin, A., Ionosonde tracking of infrasound wavefronts in the thermosphere launched by seismic waves after the 2010 M8.8 Chile earthquake, J. Geophys. Res.: Space, 2016, vol. 121, no. 3, pp. 2683–2692.  https://doi.org/10.1002/2015JA022260 CrossRefGoogle Scholar
  23. 23.
    Mayr, H.G., Harris, I., Varosi, F., and Herrero, F.A., Global excitation of wave phenomena in a dissipative multiconstituent medium, J. Geophys. Res., 1984, vol. 89, no. A12, pp. 10929–10959.CrossRefGoogle Scholar
  24. 24.
    Nikolaevskii, V.N., Review: The Earth’s crust, dilatancy, and earthquakes, Mekhanika ochaga zemletryasenii (The Mechanics of Earthquake Rupture), Rice, J., Moscow: Mir, 1982, pp. 133–215.Google Scholar
  25. 25.
    Novikov, L.S., Osnovy ekologii okolozemnogo kosmicheskogo prostranstva (Basics of Near-Earth Space Ecology), Moscow: Universitetskaya kniga, 2006.Google Scholar
  26. 26.
    Perevalova, N.P., Voeikov, S.V., Yasyukevich, Yu.V., Ishin, A.B., Voeikova, E.S., and San’kov, V.A., Study of ionospheric disturbances caused by the Japan earthquake of 11th March 2011 according to GEONET data, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2012, vol. 9, no. 3, pp. 172–180.Google Scholar
  27. 27.
    Riznichenko, Yu.V., Crustal earthquake size and seismic moment, Issledovaniya po fizike zemletryasenii (Studies on the Physics of Earthquakes), Moscow: Nauka, 1976, pp. 9–27.Google Scholar
  28. 28.
    Row, R.V., Evidence of long-period acoustic-gravity waves launched into the F region by the Alaskan earthquake of March 28, 1964, J. Geophys. Res., 1966, vol. 71, no. 1, pp. 343–345.CrossRefGoogle Scholar
  29. 29.
    Row, R.V., Acoustic–gravity waves in the upper atmosphere due to a nuclear detonation and an earthquake, J. Geophys. Res., 1967, vol. 72, no. 5, pp. 1599–1610.CrossRefGoogle Scholar
  30. 30.
    Sun, L., Wan, W., Ding, F., and Mao, T., Gravity wave propagation in the realistic atmosphere based on a three-dimensional transfer function model, Ann. Geophys., 2007, vol. 25, no. 9, pp. 1979–1986.  https://doi.org/10.5194/angeo-25-1979-2007 CrossRefGoogle Scholar
  31. 31.
    Sun, Y.-Y., Liu, J.-Y., Lin, C.-Y., Tsai, H.-F., Chang, L.C., Chen, C.-Y., and Chen, C.-H., Ionospheric F2 region perturbed by the 25 April 2015 Nepal earthquake, J. Geophys. Res.: Space, 2016, vol. 121, no. 6, pp. 5778–5784.  https://doi.org/10.1002/2015JAA022280 CrossRefGoogle Scholar
  32. 32.
    Wickersham, A.F., Identification of acoustic–gravity wave modes from ionospheric range-time observations, J. Geophys. Res., 1996, vol. 71, no. 19, pp. 4551–4555.  https://doi.org/10.1029/JZ071i019p04551 CrossRefGoogle Scholar
  33. 33.
    Yeh, K.C. and Liu, C.H., Acoustic–gravity waves in the upper atmosphere, Rev. Geophys. Space Phys., 1974, vol. 12, no. 2, pp. 193–216.CrossRefGoogle Scholar
  34. 34.
    Yuen, P.C., Weaver, P.F., Suzuki, R.K., and Furumoto, A.S., Continuous traveling coupling between seismic waves and the ionosphere evident in May 1968 Japan earthquake data, J. Geophys. Res., 1969, vol. 74, no. 9, pp. 2256–2264.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Space Research, RAS (IKI RAS)MoscowRussia
  2. 2.N.V. Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowaves Propagation RAS (IZMIRAN)MoscowTroitskRussia

Personalised recommendations