Advertisement

Geomagnetism and Aeronomy

, Volume 59, Issue 2, pp 147–154 | Cite as

Mapping of Geomagnetic Cutoff Rigidity of Cosmic Rays during the Main Phase of the Magnetic Storm of November 20, 2003

  • O. A. Danilova
  • I. M. Demina
  • N. G. PtitsynaEmail author
  • M. I. Tyasto
Article
  • 2 Downloads

Abstract

In this work, geomagnetic cutoff rigidities are calculated in a model magnetosphere field on the world latitude–longitude 5° × 15° grid during the main phase of the magnetic storm of November 20, 2003. A decrease in geomagnetic thresholds (ΔR) by up to 1.8 GV as compared to thresholds in the main field is observed in the maximum of the geomagnetic storm at 2000 UT at middle and low latitudes. In the equatorial part, ΔR amounts to 0.5–0.6 GV. It has been found that the global distribution of drops in the cutoff rigidities exhibits a North–South asymmetry, as well as day–night asymmetry. This is expressed by the fact that the ΔR maximum in the daytime sector is observed at a latitude of ~40° N in the Northern Hemisphere and ~60° S in the Southern Hemisphere. Conversely, the ΔR maximum is observed in the nighttime sector at a latitude of ~55° N in the Northern Hemisphere and ~45° S in the Southern Hemisphere. Moreover, the maximum ΔR values in the Northern Hemisphere in the daytime sector are higher than in the nighttime sector; in the Southern Hemisphere, the maximum ΔR values in the daytime sector are lower than in the nighttime sector. The observed magnetospheric effects in the global distribution of ΔR seem to be caused by the dominant impact of the partial ring current that develops in the main storm phase.

Notes

REFERENCES

  1. 1.
    Antonova, O.F., Baisultanova, L.M., Belov, A.V., Dorman, L.I., and Yanke, V.G., The longitude and latitude dependences of the geomagnetic cutoff rigidity variations during strong magnetic storms, in Proceedings of the 21st International Cosmic Ray Conference, 6–19 January 1990, Adelaide, Australia, Protheroe, R.J., Ed., 1990, vol. 7, pp. 10–13.Google Scholar
  2. 2.
    Asaulenko, L.G., Dorman, L.I., Smirnov, V.S., and Tyasto, M.I., The effect of geomagnetic field limitedness in cosmic rays, Geomagn. Aeron., 1965, vol. 5, no. 5, pp. 809–815.Google Scholar
  3. 3.
    Belov, A., Baisultanova, L., Eroshenko, E., Mavromichalaki, H., Yanke, V., Pchelkin, V., Plainaki, C., and Mariatos, G., Magnetospheric effects in cosmic rays during the unique magnetic storm on November 2003, J. Geophys. Res., 2005, vol. 110, A09S20.  https://doi.org/10.1029/2005JA011067 CrossRefGoogle Scholar
  4. 4.
    Blanch, E., Altadill, D., Boška, J., Burešova, D., and Hernandez-Pajares, M., November 2003 event: Effects on the Earth’s ionosphere observed from ground-based ionosonde and GPS data, Ann. Geophys., 2005, vol. 23, no. 9, pp. 3027–3034.CrossRefGoogle Scholar
  5. 5.
    Bojanowska, M., Extremely strong magnetic storms Aurora Borealis over Poland, Przegl. Geofiz., 2005, nos. 3–4, pp. 219–227.Google Scholar
  6. 6.
    Cummings, W., Asymmetric ring currents and the low-latitude disturbance daily variation, J. Geophys. Res., 1966, vol. 71, no. 19, pp. 4495–4503.CrossRefGoogle Scholar
  7. 7.
    Dmitriev, A.V., Suvorova, A.V., Chao, J.-K., and Yang, Y.-H., Dawn–dusk asymmetry of geosynchronous magnetopause crossings, J. Geophys. Res., 2004, vol. 109, A05203.  https://doi.org/10.1029/2003JA010171 CrossRefGoogle Scholar
  8. 8.
    Dorman, L.I., Gushchina, R.T., Smart, D.F., and Shea, M.A., Effektivnye zhestkosti obrezaniya kosmicheskikh luchei (Effective Cutoff Rigidities of Cosmic Rays), Moscow: Nauka, 1972.Google Scholar
  9. 9.
    Dvornikov, V.M. and Sdobnov, V.E., Modification of the spectrographic global survey method for studying the variations in the planetary system of geomagnetic cutoff rigidities, Izv. Akad. Nauk SSSR, Ser. Fiz., 1991, vol. 55, no. 10, pp. 1988–1991.Google Scholar
  10. 10.
    Dvornikov, V.E. and Sdobnov, V.E., Variations in the rigidity spectrum and anisotropy cosmic rays at the period of Forbush effect on the 12–25 July 1982, Int. J. Geomagn. Aeron. (Engl. Transl.), 2002, vol. 3, no. 3, pp. 217–223.Google Scholar
  11. 11.
    Dvornikov, V.M. and Sdobnov, V.E., Variations in geomagnetic cutoff rigidity of cosmic rays in some regions of Asia during the 2003 extreme events, Soln.-Zemnaya Fiz., 2009, vol. 14, pp. 23–26.Google Scholar
  12. 12.
    Fillius, R.W., Penetration of solar protons to four Earth radii in the equatorial plane, Ann. Geophys., 1968, vol. 24, pp. 821–840.Google Scholar
  13. 13.
    Flueckiger, E.O., Shea, M.A., and Smart, D.F., On the latitude dependence of cosmic ray cutoff rigidity variations during the initial phase of a geomagnetic storm, in Proceedings of the 20th International Conference on Cosmic Rays, 2–15 August 1987, Moscow, USSR, Moscow, 1987, vol. 4, p. 216.Google Scholar
  14. 14.
    Greenspan, M. and Hamilton, D.C., A test of the Dessler–Parker–Sckopke relation during magnetic storms, J. Geophys. Res., 2000, vol. 105, pp. 5419–5430.CrossRefGoogle Scholar
  15. 15.
    Kalegaev, V.V., Bakhmina, K.Yu., Alekseev, I.I., Belenkaya, E.S., Feldshtein, Ya.I., and Ganushkina, N.V., Ring current asymmetry during a magnetic storm, Geomagn. Aeron. (Engl. Transl.), 2008, vol. 48, no. 6, pp. 747–758.Google Scholar
  16. 16.
    Kress, B.T., Mertens, C.J., and Wiltberger, M., Solar energetic particle cutoff variations during the 29–31 October 2003 geomagnetic storm, Space Weather, 2010, vol. 8, S05001.  https://doi.org/10.1029/2009SW000488 CrossRefGoogle Scholar
  17. 17.
    Kress, B.T., Hudson, M.K., Selesnick, R.S., Mertens, C.J., and Engel, M., Modeling geomagnetic cutoffs for space weather applications, J. Geophys. Res.: Space, 2015, vol. 120, no. 7, pp. 5694–5702. doi 1002/2014JA020899Google Scholar
  18. 18.
    Krymskii, G.F., Krivoshapkin, P.A., Mamrukova, V.P., and Skripin, G.V., Effects of the heliomagnetosphere interaction with the galactic field in cosmic rays, Geomagn. Aeron., 1981, vol. 21, no. 5, pp. 923–925.Google Scholar
  19. 19.
    Kudela, K., Storini, M., Hofer, M.Y., and Belov, A., Cosmic rays relation to space weather, Space Sci. Rev., 2000, vol. 93, pp. 153–174.CrossRefGoogle Scholar
  20. 20.
    Lanzerotti, L.J., Penetration of solar protons and alphas to the geomagnetic equator, Phys. Rev. Lett., 1968, vol. 21, no. 13, pp. 929–933.CrossRefGoogle Scholar
  21. 21.
    Liemohn, M.W., Kozyra, J.U., Thomsen, M.F., Roeder, G.Lu., Borovsky, J.E., and Cayton, T.E., Dominant role of the asymmetric ring current in producing the stormtime Dst*, J. Geophys. Res., 2001, vol. 106, no. A6, pp. 10883–10904.CrossRefGoogle Scholar
  22. 22.
    Makarov, G.A., North–south asymmetry of geomagnetic activity and solar wind electric field, J. Sol.-Terr. Phys., 2016, vol. 2, no. 1, pp. 44–49.Google Scholar
  23. 23.
    Maltsev, Y.P., Points of controversy in the study of magnetic storms, Space Sci. Rev., 2004, vol. 110, nos. 3–4, pp. 227–277.CrossRefGoogle Scholar
  24. 24.
    Maltsev, Y.P. and Ostapenko, A.A., Azimuthally asymmetric ring current as a function of dst and solar wind conditions, Ann. Geophys., 2004, vol. 22, no. 8, pp. 2989–2996.CrossRefGoogle Scholar
  25. 25.
    McCracken, K.G., Rao, U.R., and Shea, M.A., The trajectories of cosmic rays in a high degree simulation of the geomagnetic field, M.I.T. Tech. Rep. 77, Cambridge: Massachusetts Institute of Technology, Laboratory for Nuclear Science and Engineering, 1962.Google Scholar
  26. 26.
    Mikhalev, A.V., Midlatitude airglows in East Siberia in 1991–2012, Soln.-Zemnaya Fiz., 2013, vol. 24, pp. 78–83.Google Scholar
  27. 27.
    Paulikas, G.A. and Blake, J.B., Penetration of solar protons to synchronous altitude, J. Geophys. Res., 1969, vol. 74, no. A9, pp. 2161–2168.  https://doi.org/10.1029/JA074i009p02161 CrossRefGoogle Scholar
  28. 28.
    Shea, M.A., Smart, D.F., and McCracken, K.G., A study of vertical cutoff rigidities using sixth degree simulations of the geomagnetic field, J. Geophys. Res., 1965, vol. 70, pp. 4117–4130.CrossRefGoogle Scholar
  29. 29.
    Siebert, M., Magnetic activity differences between the two hemispheres following the sector structure of the interplanetary magnetic field, J. Geophys. Res., 1968, vol. 73, pp. 3049–3052.CrossRefGoogle Scholar
  30. 30.
    Smart, D.F. and Shea, M.A., The space-developed dynamic vertical cutoff rigidity model and its applicability to aircraft radiation dose, Adv. Space Res., 2003, vol. 32, no. 1, pp. 103–108.  https://doi.org/10.1016/S0273-1177(03)90376-0 CrossRefGoogle Scholar
  31. 31.
    Smart, D.F., Shea, M.A., Tylka, A.J., and Boberg, P.R., A geomagnetic cutoff rigidity interpolation tool: Accuracy verification and application to space weather, Adv. Space Res., 2006, vol. 37, no. 6, pp. 1206–1217.  https://doi.org/10.1016/j.asr.2006.02.011 CrossRefGoogle Scholar
  32. 32.
    Tsyganenko, N.A., A model of the near magnetosphere with a dawn–dusk asymmetry: 1. Mathematical structure, J. Geophys. Res., 2002a, vol. 107, no. A8, 1179.  https://doi.org/10.1029/2001JA000219 Google Scholar
  33. 33.
    Tsyganenko, N.A., A model of the near magnetosphere with a dawn–dusk asymmetry: 2. Parametrization and fitting to observation, J. Geophys. Res., 2002b, vol. 107, no. A8, 1176.  https://doi.org/10.1029/2001JA000220 Google Scholar
  34. 34.
    Tsyganenko, N.A. and Sitnov, M.I., Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res., 2005, vol. 110, A03208.  https://doi.org/10.1029/2004JA010798 CrossRefGoogle Scholar
  35. 35.
    Tsyganenko, N.A., Singer, H.J., and Kasper, J.C., Storm-time distortion of the inner magnetosphere: How severe can it get?, J. Geophys. Res., 2003, vol. 108, no. A5, 1209.  https://doi.org/10.1029/2002JA009808 Google Scholar
  36. 36.
    Tyasto, M.I., Danilova, O.A., Dvornikov, V.M., and Sdobnov, V.E., Reflection of the solar wind parameters in the CR geomagnetic cutoff rigidity before a strong magnetic storm in November 2003, Geomagn. Aeron. (Engl. Transl.), 2008, vol. 48, no. 6, pp. 691–708.Google Scholar
  37. 37.
    Tyasto, M.I., Danilova, O.A., and Sdobnov, V.E., Cosmic ray geomagnetic cutoff rigidities in the magnetic fields of two empirical models during a strong disturbance in November 2003: A comparison of models, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 8, pp. 1087–1096.Google Scholar
  38. 38.
    Tyasto, M.I., Danilova, O.A., Ptitsyna, N.G., and Sdobnov, V.E., Variations in cosmic ray cutoff rigidities during the great geomagnetic storm of November 2004, Adv. Space Res., 2013, vol. 51, no. 7, pp. 1230–1237.CrossRefGoogle Scholar
  39. 39.
    Vazquez, M.V. and Vaquero, J.M., Aurorae observed at the Canary Islands, Sol. Phys., 2010, vol. 267, no. 2, pp. 431–444.CrossRefGoogle Scholar
  40. 40.
    Veselovskii, I.S., Panasyuk, M.I., Avdyushin, S.I., et al., Solar and heliospheric phenomena in October–November 2003: Causes and effects, Cosmic Res., 2004, vol. 42, no. 5, pp. 435–488.CrossRefGoogle Scholar
  41. 41.
    Wang, H., Lühr, H., Ma, S., Weygand, J., Skoug, R.M., and Yin, F., Field-aligned currents observed by CHAMP during the intense 2003 geomagnetic storm events, Ann. Geophys., 2006, vol. 24, no. 1, pp. 311–324.CrossRefGoogle Scholar
  42. 42.
    Wilcox, J.M., Asymmetry in the geomagnetic response to the polarity of the interplanetary magnetic field, J. Geophys. Res.: Space, 1968, vol. 73, pp. 6835–6836.Google Scholar
  43. 43.
    Yermolaev, Yu.I., Zelenyi, L.M., Zastenker, G.N., et al., Solar and heliospheric disturbances that resulted in the strongest magnetic storm of November 20, 2003, Geomagn. Aeron. (Engl. Transl.), 2005, vol. 45, no. 1, pp. 20–46.Google Scholar
  44. 44.
    Yoshida, S., Akasofu, S.-I., and Kendal, P.S., Ring current effects on cosmic rays, J. Geophys. Res.: Space, 1968, vol. 73, pp. 3377–3394.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. A. Danilova
    • 1
  • I. M. Demina
    • 1
  • N. G. Ptitsyna
    • 1
    Email author
  • M. I. Tyasto
    • 1
  1. 1.St. Petersburg Branch of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation, Russian Academy of Sciences (SPbB IZMIRAN)St. PetersburgRussia

Personalised recommendations