Advertisement

Geomagnetism and Aeronomy

, Volume 58, Issue 8, pp 1159–1169 | Cite as

Contributions from Different-Type Active Regions Into the Total Solar Unsigned Magnetic Flux

  • V. I. AbramenkoEmail author
  • A. V. Zhukova
  • A. S. Kutsenko
Article

Abstract

Data set acquired by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) during 2010–2017 allowed us to classify active regions (ARs) into three categories: A-type— regular bipolar ARs; U-type—unipolar spots; B-type—irregular ARs, violating either Hale polarity law or Joy’s law or having the leading spot less than the main following spot. A separate subset of anti-Hale ARs was formed. We selected 1494 ARs in total and found the following: (i) Pearson correlation coefficient r between the total unsigned flux for a given category and the International Sunspot Number smoothly decreases with transition from A-type (r = 0.57) to B-type (r = 0.53) to anti-Hale ARs (r = 0.31) to U-type (r = 0.18); (ii) yearly contributions into the total flux from categories also gradually decreases: from 50–70% from A-type ARs to 20–40% from B‑type ARs to 10–20% from U-type ARs to 5–11% from anti-Hale ARs. (iii) At the beginning of the solar minimum, the fraction of flux from anti-Hale groups increased from 5 to 9% and amount of flux per magnetogram was constant at about 1021 Mx level. The data are compatible with a concept that generation of the magnetic field on the Sun occurs as a united process in a non-linear dynamical dissipative system, i.e., global and local (fluctuation) dynamos are inseparable and operate together. The observed enhancement of the anti-Hale flux during the solar maximum can be due to the combined mechanisms of global mean-field and local fluctuation dynamos.

REFERENCES

  1. 1.
    Abramenko, V.I., Yurchyshyn, V.B., and Goode, P.R., Observational signatures of the small-scale dynamo in the quiet Sun, ASP Conf. Ser., 2012, vol. 455, pp. 17–24.Google Scholar
  2. 2.
    Babcock, H.W., The topology of the Sun’s magnetic field and the 22-year cycle, Astrophys. J., 1961, vol. 133, pp. 572–587.CrossRefGoogle Scholar
  3. 3.
    Batchelor, G.K., On the spontaneous magnetic field in a conducting liquid in turbulent motion, Proc. R. Soc. London, Ser. A, 1950, vol. 201, pp. 405–416.CrossRefGoogle Scholar
  4. 4.
    Bobra, M.G., Sun, X., Hoeksema, J.T., et al., The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs—Space-Weather HMI Active Region Patches, Sol. Phys., 2014, vol. 289, no. 9, pp. 3549–3578.CrossRefGoogle Scholar
  5. 5.
    Brandenburg, A. and Subramanian, K., Astrophysical magnetic fields and nonlinear dynamo theory, Phys. Rep., 2005, vol. 417, pp. 1–209.CrossRefGoogle Scholar
  6. 6.
    Brandenburg, A., Sokoloff, D., and Subramanian, K., Current status of turbulent dynamo theory: From large-scale to small-scale dynamos, Space Sci. Rev., 2012, vol. 169, pp. 123–157.CrossRefGoogle Scholar
  7. 7.
    Cattaneo, F., On the origin of magnetic fields in the quiet photosphere, Astrophys. J., 1999, vol. 515, pp. 39–42.CrossRefGoogle Scholar
  8. 8.
    Charbonneau, P., Dynamo models of the solar cycle, Living Rev. Sol. Phys., 2010, vol. 7, id 3.Google Scholar
  9. 9.
    Couvidat, S., Schou, J., Hoeksema, J.T., et al., Observables processing for the Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory, Sol. Phys., 2016, vol. 291, pp. 1887–1938.CrossRefGoogle Scholar
  10. 10.
    Elsasser, W.M., Hydromagnetic dynamo theory, Rev. Mod. Phys., 1956, vol. 28, pp. 135–163.CrossRefGoogle Scholar
  11. 11.
    González Hernández, I., Komm, R., van Driel-Gesztelyi, L., et al., Subsurface flows associated with non-Joy oriented active regions: A case study, J. Phys.: Conf. Ser., 2013, vol. 440, id 012050.Google Scholar
  12. 12.
    Goode, P.R., Yurchyshyn, V.B., Cao, W., et al., Highest resolution observations of the quietest Sun, Astrophys. J., vol. 714, pp. 31–35.Google Scholar
  13. 13.
    Grotrian, W. and Kunzel, H., Über den Induktionsfluβ durch die Sonnenflecken, Z. Astrophys., 1950, vol. 28, pp. 28–42.Google Scholar
  14. 14.
    Hagenaar, H., Ephemeral regions on a sequence of full-disk Michelson Doppler imager magnetograms, Astrophys. J., 2001, vol. 555, pp. 448–461.CrossRefGoogle Scholar
  15. 15.
    Hagenaar, H.J., Schrijver, C.J., and Title, A.M., The properties of small magnetic regions on the solar surface and the implications for the solar dynamo(s), Astrophys. J., 2003, vol. 584, pp. 1107–1119.CrossRefGoogle Scholar
  16. 16.
    Hale, G.E. and Nicholson, S.B., The law of sun-spot polarity, Astrophys. J., 1925, vol. 62, pp. 270–301.CrossRefGoogle Scholar
  17. 17.
    Hale, G.E., Ellerman, F., Nicholson, S.B., and Joy, A.H., The magnetic polarity of sun-spots, Astrophys. J., 2003, vol. 49, pp. 153–186.CrossRefGoogle Scholar
  18. 18.
    Harvey, K.L. and Zwaan, C., Properties and emergence of bipolar active regions, Sol. Phys., 1993, vol. 148, pp. 85–118.CrossRefGoogle Scholar
  19. 19.
    Hazra, G., Choudhuri, A.R., and Miesch, M.S., A theoretical study of the build-up of the Sun’s polar magnetic field by using a 3D kinematic dynamo model, Astrophys. J., 2017, vol. 835, id 39.Google Scholar
  20. 20.
    Hoeksema, J.T., Liu, Y., Hayashi, K., et al., The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: Overview and performance, Sol. Phys., 2014, vol. 289, pp. 3483–3530.CrossRefGoogle Scholar
  21. 21.
    Illarionov, E., Tlatov, A., and Sokoloff, D., The properties of the tilts of bipolar solar regions, Sol. Phys., 2015, vol. 290, pp. 351–361.CrossRefGoogle Scholar
  22. 22.
    Ishikawa, R. and Tsuneta, S., Comparison of transient horizontal magnetic fields in a plage region and in the quiet Sun, Astron. Astrophys., 2009, vol. 495, no. 1, pp. 607–612.CrossRefGoogle Scholar
  23. 23.
    Jin, C.L. and Wang, J.X., The latitude distribution of small-scale magnetic elements in solar cycle 23, Astrophys. J., 2012, vol. 745, id 39.Google Scholar
  24. 24.
    Jin, C.L., Wang, J.X., Song, Q., Zhao, H., et al., The Sun’s small-scale magnetic elements in solar cycle 23, Astrophys. J., 2012, vol. 731, id 37.Google Scholar
  25. 25.
    Kazantsev, A.P., Enhancement of a magnetic field by a conducting fluid, Sov. Phys. JETP, 1968, vol. 26, pp. 1031–1034.Google Scholar
  26. 26.
    Kitchatinov, L.L., The solar dynamo: inferences from observations and modeling, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 7, pp. 867–876.Google Scholar
  27. 27.
    Krause, F. and Raedler, K.H., Mean-Field Magnetohydrodynamics and Dynamo Theory, Oxford: Pergamon, 1980.Google Scholar
  28. 28.
    Kutsenko, A.S. and Abramenko, V.I., Using SDO/HMI magnetograms as a source of the solar mean magnetic field data, Sol. Phys., 2016, vol. 291, pp. 1613–1623.CrossRefGoogle Scholar
  29. 29.
    Leighton, R.B., Transport of magnetic fields on the Sun, Astrophys. J., 1964, vol. 140, pp. 1547–1564.CrossRefGoogle Scholar
  30. 30.
    Lemen, J.R., Title, A.M., Akin, D.J., et al., The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Sol. Phys., 2012, vol. 275, pp. 17–40.CrossRefGoogle Scholar
  31. 31.
    Li, J. and Ulrich, R.K., Long-term measurements of sunspot magnetic tilt angles, Astrophys. J., 2012, vol. 758, id 115.Google Scholar
  32. 32.
    Lites, B.W. and Skumanich, A., Martínez Pillet, V., Vector magnetic fields of emerging solar flux. I. Properties at the site of emergence, Astron. Astrophys., 1998, vol. 333, pp. 1053–1068.Google Scholar
  33. 33.
    Lites, B.W., Kubo, M., Socas-Navarro, H., et al., The horizontal magnetic flux of the quiet-Sun internetwork as observed with the Hinode spectro-polarimeter, Astrophys. J., 2008, vol. 672, no. 2, pp. 1237–1253.CrossRefGoogle Scholar
  34. 34.
    Liu, Y., Hoeksema, J.T., Scherrer, P.H., et al., Comparison of line-of-sight magnetograms taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/ Michelson Doppler Imager, Sol. Phys., 2012, vol. 279, no. 1, pp. 295–316.CrossRefGoogle Scholar
  35. 35.
    Livingston, W., Harvey, J.W., Malanushenko, O.V., et al., Sunspots with the strongest magnetic fields, Sol. Phys., 2006, vol. 239, pp. 41–68.CrossRefGoogle Scholar
  36. 36.
    McClintock, B.H., Norton, A.A., and Li, J., Re-examining sunspot tilt angle to include anti-hale statistics, Astrophys. J., 2014, vol. 797, no. 2, id 130.Google Scholar
  37. 37.
    Miesch, M.S., The dynamo dialectic: An inside look at the current solar minimum, ASP Conf. Ser., 2010, vol. 428, pp. 29–37.Google Scholar
  38. 38.
    Miesch, M.S., The solar dynamo, Philos. Trans. R. Soc., A, 2012, vol. 370, pp. 3049–3069.Google Scholar
  39. 39.
    Moffat, H.K., Magnetic Field Generation in Electrically Conducting Fluids, Cambridge: Cambridge University Press, 1978.Google Scholar
  40. 40.
    Nagovitsyn, Yu.A. and Pevtsov, A.A., On the presence of two populations of sunspots, Astrophys. J., 2016, vol. 833, pp. 94–99.CrossRefGoogle Scholar
  41. 41.
    Nagovitsyn, Yu.A., Pevtsov, A.A., and Osipova, A.A., Two populations of sunspots: Differential rotation, Astron. Lett., 2018, vol. 44, pp. 202–211.CrossRefGoogle Scholar
  42. 42.
    Nelson, N.J., Brown, B.P., Brun, A.S., et al., Magnetic wreaths and cycles in convective dynamos, Astrophys. J., 2013, vol. 762, id 73.Google Scholar
  43. 43.
    Norton, A.A., Jones, E.H., Linton, M.G., et al., Magnetic flux emergence and decay rates for preceder and follower sunspots observed with HMI, Astrophys. J., 2017, vol. 842, id 3.Google Scholar
  44. 44.
    Olemskoy, S.V. and Kitchatinov, L.L., Grand minima and north–south asymmetry of solar activity, Astrophys. J., 2013, vol. 777, id 71.Google Scholar
  45. 45.
    Ossendrijver, M., The solar dynamo, Astron. Astrophys. Rev., 2003, vol. 11, pp. 287–367.CrossRefGoogle Scholar
  46. 46.
    Parker, E.N., The formation of sunspots from the solar toroidal field, Astrophys. J., 1955, vol. 121, pp. 491–507.CrossRefGoogle Scholar
  47. 47.
    Pevtsov, A.A., Berger, M.A., Nindos, A., et al., Magnetic helicity, tilt, and twist, Space Sci. Rev., 2014, vol. 186, pp. 285–324.CrossRefGoogle Scholar
  48. 48.
    Pietarila Graham, J., Cameron, R., and Schüssler, M., Turbulent small-scale dynamo action in solar surface simulations, Astrophys. J., 2010, vol. 714, no. 2, pp. 1606–1616.CrossRefGoogle Scholar
  49. 49.
    Pipin, V.V., Moss, D., Sokoloff, D., et al., Reversals of the solar magnetic dipole in the light of observational data and simple dynamo models, Astron. Astrophys., 2014, vol. 567, id A90.Google Scholar
  50. 50.
    Rempel, M., Numerical simulations of quiet Sun magnetism: On the contribution from a small-scale dynamo, Astrophys. J., 2014, vol. 789, id 132.Google Scholar
  51. 51.
    Scherrer, P.H., Schou, J., Bush, R.I., et al., The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO), Sol. Phys., 2012, vol. 275, pp. 207–227.CrossRefGoogle Scholar
  52. 52.
    Schober, J., Schleicher, D., Federrath, C., et al., Magnetic field amplification by small-scale dynamo action: Dependence on turbulence models and Reynolds and Prandtl numbers, Phys. Rev. E, 2012, vol. 85, id 026303.Google Scholar
  53. 53.
    Schou, J., Scherrer, P.H., Bush, R.I., et al., Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO), Sol. Phys., 2012, vol. 275, pp. 229–259.CrossRefGoogle Scholar
  54. 54.
    Schrijver, C.J. and Harvey, K.L., The photospheric magnetic flux budget, Sol. Phys., 1994, vol. 150, pp. 1–18.CrossRefGoogle Scholar
  55. 55.
    Sokoloff, D.D., Khlystova, A., and Abramenko, V., Solar small-scale dynamo and polarity of sunspot groups, Mon. Not. R. Astron. Soc., 2015, vol. 451, pp. 1522–1527.CrossRefGoogle Scholar
  56. 56.
    Sokoloff, D.D., Yushkov, E.V., and Lukin, A.S., Small-scale magnetic helicity and nonlinear stabilization of the dynamo, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, pp. 844–848.Google Scholar
  57. 57.
    Steenbeck, M., Krause, F., and Rädler, K.-H., Berechnung der mittleren Lorentz-Feldstärke \(\overline {v \times b} \) für ein elektrisch leitendes Medium in turbulenter, durch Coriolis–Kräfte beeinflußter Bewegung, Z. Naturforsch., A: Astrophys., Phys. Phys. Chem., 1966, vol. 21, pp. 369–376.Google Scholar
  58. 58.
    Stenflo, J.O. and Kosovichev, A.G., Bipolar magnetic regions on the Sun: Global analysis of the SOHO/MDI data set, Astrophys. J., 2012, vol. 745, id 129.Google Scholar
  59. 59.
    Tsuneta, S., Ichimoto, K., Katsukawa, Y., et al., The solar optical telescope for the Hinode Mission: An overview, Sol. Phys., 2008, vol. 249, pp. 167–196.CrossRefGoogle Scholar
  60. 60.
    van Driel-Gesztelyi, L. and Green, L.M., Evolution of active regions, Living Rev. Sol. Phys., 2015, vol. 12, id 1.Google Scholar
  61. 61.
    Vögler, A. and Schüssler, M., A solar surface dynamo, Astron. Astrophys., 2007, vol. 465, pp. L43–L46.CrossRefGoogle Scholar
  62. 62.
    Wang, Y.M. and Sheeley, N.R., Average properties of bipolar magnetic regions during sunspot cycle 21, Sol. Phys., 1989, vol. 124, pp. 81–100.CrossRefGoogle Scholar
  63. 63.
    Yeo, K.L., Solanki, S.K., and Krivova, N.A., Intensity contrast of solar network and faculae, Astron. Astrophys., 2013, vol. 550, id A95.Google Scholar
  64. 64.
    Zeldovich, Y.B. and Ruzmaikin, A.A., Reviews of topical problems: The hydromagnetic dynamo as the source of planetary, solar, and galactic magnetism, Sov. Phys. Usp., 1987, vol. 30, no. 6, pp. 494–506.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Abramenko
    • 1
    Email author
  • A. V. Zhukova
    • 1
  • A. S. Kutsenko
    • 1
  1. 1.Crimean Astrophysical Observatory of Russian Academy of ScienceNauchnyBakhchisarayRussia

Personalised recommendations