Advertisement

Geomagnetism and Aeronomy

, Volume 58, Issue 8, pp 1087–1096 | Cite as

Evolution of Solar Active Regions Before Large Flares: Overview of the Events of 2010–2017

  • A. G. TlatovEmail author
  • V. E. Abramov-MaximovEmail author
  • V. N. BorovikEmail author
  • L. V. OpeikinaEmail author
Article

Abstract

The paper presents a study of the evolution of the photospheric magnetic field of active regions (ARs) of the Sun in which flares (larger than the M9 class in the Geostationary Operational Environmental Satellite (GOES) X-ray classification) occurred in 2010–2017. The purpose of this paper is to detect the precursors of flares. Thirteen ARs at a distance of not more than 45 degrees from the central meridian are selected for analysis out of 31 ARs in which flares larger than M9.0 were detected in the specified period. The magnetographic characteristics of the selected ARs are studied based on the Solar Dynamics Observatory (SDO) data. A flare index is proposed. It is calculated from the data of the Helioseismic and Magnetic Imager of SDO (SDO/HMI) and reflects the distance between regions of opposite magnetic polarity computed between the field boundaries by the threshold value. The analysis showed that a sharp increase in the flare index is detected in all the studied ARs 2–3 days before large flares. Flares larger than the M9.0 class occurred 5–20 h after the global or local maximum of the flare index. It is shown using the example of individual events that regions of the opposite polarity first converged and then relatively quickly separated from each other before large flares. The revealed features of evolution of ARs before large flares can be used to develop methods for predicting them.

Notes

ACKNOWLEDGMENTS

This study was supported in part by the Program 28 of the Presidium of the Russian Academy of Sciences. A.G. Tlatov acknowledges the support of the Russian Science Foundation (project no. 15-12-20001).

We are grateful to the staff of the Special Astrophysical Observatory of the Russian Academy of Sciences for the observations of the Sun by RATAN-600 and the SDO team for the SDO/HMI observational data.

REFERENCES

  1. 1.
    Abramenko, V.I., Multifractal analysis of solar magnetograms, Sol. Phys., 2005, vol. 228, pp. 29–42.CrossRefGoogle Scholar
  2. 2.
    Abramov-Maximov, V.E., Borovik, V.N., and Opeikina, L.V., Microwave radiation of solar active regions before X flares according to the RATAN-600 observations in 2011, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 8, pp. 989–996.Google Scholar
  3. 3.
    Abramov-Maximov, V.E., Borovik, V.N., Opeikina, L.V., and Tlatov, A.G., Peculiarities of the development of active regions on the Sun prior to strong X-class flares: Joint analysis of data from the RATAN-600 radio telescope and SDO space observatory, Cosmic Res., 2014, vol. 52, no. 1, pp. 1–14.CrossRefGoogle Scholar
  4. 4.
    Abramov-Maximov, V.E., Borovik, V.N., Opeikina, L.V., and Tlatov, A.G., Dynamics of microwave sources associated with the neutral line and the magnetic-field parameters of sunspots as a factor in predicting large flares, Sol. Phys., 2015a, vol. 290, pp. 53–77.CrossRefGoogle Scholar
  5. 5.
    Abramov-Maximov, V.E., Borovik, V.N., Opeikina, L.V., and Tlatov, A.G., Precursors of the solar X flare on March 29, 2014, in the active region NOAA 12017 based on microwave radiation and magnetographic data, Geomagn. Aeron. (Engl. Transl.), 2015b, vol. 55, no. 8, pp. 1097–1103.Google Scholar
  6. 6.
    Abramov-Maksimov, V.E., Borovik, V.N., Opeikina, L.V., and Tlatov, A.G., Preflare dynamics of microwave radiation and magnetic field of Sun’s active regions, in Trudy ezhegodnoi vserossiiskoi konferentsii po fizike Solntsa “Solnechnaya i solnechno-zemnaya fizika”, 5–9 oktyabrya 2015 (Proceedings of the Annual All-Russian Conference on Solar Physics “Solar and Solar–Terrestrial Physics”, October 5–9, 2015), St. Petersburg, 2015c.Google Scholar
  7. 7.
    Abramov-Maximov, V., Borovik, V., Opeikina, L., Tlatov, A., and Yasnov, L.V., Features of microwave radiation and magnetographic characteristics of solar active region NOAA 12242 before the X1.8 flare on December 20, 2014, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 8, pp. 978–987.Google Scholar
  8. 8.
    Barnes, G. and Leka, K.D., Evaluating the performance of solar flare forecasting methods, Astrophys. J. Lett., 2008, vol. 688, pp. L107–L110.CrossRefGoogle Scholar
  9. 9.
    Benz, A.O., Flare observations, Living Rev. Sol. Phys., 2017, vol. 5, pp. 1–59.Google Scholar
  10. 10.
    Bloomfield, D.S., Higgins, P.A., McAteer, R.T.J., and Gallagher, P.T., Toward reliable benchmarking of solar flare forecasting methods, Astrophys. J. Lett., 2012, vol. 747, L41.CrossRefGoogle Scholar
  11. 11.
    Bogod, V.M., Alesin, A.M., and Pervakov, A.A., RATAN-600 radio telescope in the 24th solar activity cycle. II. Multioctave spectral and polarization high resolution solar research system, Astrophys. Bull., 2011, vol. 66, no. 2, pp. 205–214.CrossRefGoogle Scholar
  12. 12.
    Chumak, O., Zhang, H., and Gou, J., Integral properties of the magnetic fields of solar active regions under quiet and flare activity conditions, Astron. Astrophys. Trans., 2004, vol. 23, pp. 525–531.CrossRefGoogle Scholar
  13. 13.
    Falconer, D., Moore, R.L., Barghouty, A.F., and Khazanov, I., MAG4 versus alternative techniques for forecasting active-region flare productivity, in American Astronomical Society Meeting no. 224, 2014, id 402.04.Google Scholar
  14. 14.
    Georgoulis, M.K., Are solar active regions with major flares more fractal, multifractal, or turbulent than others?, Sol. Phys., 2012, vol. 276, pp. 161–181.CrossRefGoogle Scholar
  15. 15.
    Georgoulis, M.K. and Rust, D.M., Quantitative forecasting of major solar flares, Astrophys. J. Lett., 2007, vol. 661, pp. L109–L112.CrossRefGoogle Scholar
  16. 16.
    Harra, L.K., Schrijver, C.J., Janvier, M., et al., The characteristics of solar X-class flares and CMEs: A paradigm for stellar superflares and eruptions?, Sol. Phys., 2016, vol. 291, pp. 1761–1782.CrossRefGoogle Scholar
  17. 17.
    Ishkov, V.N., Emerging magnetic fluxes: A key to the forecast of major solar flares, Izv. Ross. Akad. Nauk, Ser. Fiz., 1998, vol. 62, no. 9, pp. 1835–1839.Google Scholar
  18. 18.
    Komm, R., Howe, R., and Hill, F., González Hernández, I., and Toner, C., Kinetic helicity density in solar subsurface layers and flare activity of active regions, Astrophys. J., 2005, vol. 630, pp. 1184–1193.CrossRefGoogle Scholar
  19. 19.
    Korsós, M.B., Baranyi, T., and Ludmany, A., Pre-flare dynamics of sunspot groups, Astrophys. J., 2014, vol. 789, id 107.Google Scholar
  20. 20.
    Korsós, M.B., Ludmany, A., Erdély, R., and Barany, T., On flare predictability based on sunspot group evolution, Astrophys. J. Lett., 2015, vol. 802, id L21.Google Scholar
  21. 21.
    Korsós, M.B., Ruderman, M.S.,and Erdélyi, R., An application of the weighted horizontal magnetic gradient to solar compact and eruptive events, 2018a. https://arxiv.org/pdf/1801.00281.Google Scholar
  22. 22.
    Korsós, M.B., Poedts, S., Gyenge, M.K., Georgoulis, M.K., Yu, S., Bisoi, S.K., Yan, Y., Ruderman, M.S., and Erdélyi, R., On the evolution of pre-flare patterns of a 3-D model of AR 11429, 2018b. https://arxiv.org/ pdf/1801.00433.Google Scholar
  23. 23.
    Leka, K.D. and Barnes, G., Photospheric magnetic field properties of flaring versus flare-quiet active regions, Astrophys. J., 2007, vol. 656, pp. 1173–1186.CrossRefGoogle Scholar
  24. 24.
    Mason, J.P. and Hoeksema, J.T., Testing automated solar flare forecasting with 13 years of Michelson Doppler imager magnetograms, Astrophys. J., 2010, vol. 723, pp. 634–640.CrossRefGoogle Scholar
  25. 25.
    McIntosh, P.S., A revised classification of sunspots and its use in flare predictions, in Solar–Terrestrial Predictions, Boulder, Colorado: NOAA, 1986, pp. 357–365.Google Scholar
  26. 26.
    McIntosh, P.S., The classification of sunspot groups, Sol. Phys., 1990, vol. 125, pp. 251–267.CrossRefGoogle Scholar
  27. 27.
    Nitta, N., van Driel-Gesztelyi, L., Leka, K.D., and Shibata, K., Emerging flux and flares in NOAA 7260, Adv. Space Res., 1996, vol. 17, pp. 201–204.CrossRefGoogle Scholar
  28. 28.
    Reinard, A.A., Henthorn, J., Komm, R., and Hill, F., Evidence that temporal changes in solar subsurface helicity precede active region flaring, Astrophys. J. Lett., 2010, vol. 710, pp. L121–L125.CrossRefGoogle Scholar
  29. 29.
    Sawyer, C., Warwick, J.W., and Dennett, J.T., Solar Flare Prediction, Boulder: Colorado Associated University, 1986.Google Scholar
  30. 30.
    Scherrer, P.H., Schou, J., Bush, R.I., et al., The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO), Sol. Phys., 2012, vol. 275, pp. 207–227.CrossRefGoogle Scholar
  31. 31.
    Schrijver, C.J., A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting, Astrophys. J. Lett., 2007, vol. 655, pp. L117–L120.CrossRefGoogle Scholar
  32. 32.
    Schrijver, C.J., The nonpotentiality of coronae of solar active regions, the dynamics of the surface magnetic field, and the potential for large flares, Astrophys. J., 2016, vol. 820, id 103.Google Scholar
  33. 33.
    Solov’ev, A.A., Abramov-Maksimov, V.E., Borovik, V.N., Opeikina, L.V., and Tlatov, A.G., Features of the evolution of magnetic field gradient in the active region before a strong flare, in Trudy XXI vserossiiskoi ezhegodnoi konferentsii po fizike Solntsa “Solnechnaya i solnechno-zemnaya fizika”, 9–13 oktyabrya 2017 (Proceedings of the XXI All-Russian Annual Conference on Solar Physics “Solar and Solar–Terrestrial Physics”, October 9–13, 2017), St. Petersburg, GAO RAN, 2017, pp. 299–302.Google Scholar
  34. 34.
    Sturrock, P.A., Model of the high-energy phase of solar flares, Nature, 1966, vol. 211, pp. 695–696.CrossRefGoogle Scholar
  35. 35.
    Toriumi, S., Schrijver, C.J., Harra, L.K., Hudson, H., and Nagashima, K., Magnetic properties of solar active regions that govern large solar flares and eruptions, Astrophys. J., 2017, vol. 834, id 56.Google Scholar
  36. 36.
    Wang, H., Rapid changes of photosphere magnetic fields around flaring magnetic neutral lines, Astrophys. J., 2006, vol. 649, pp. 490–497.CrossRefGoogle Scholar
  37. 37.
    Wang, H., Ewell, M.W., Jr., Zirin, H., and Ai, G., Vector magnetic field changes associated with X-class flares, Astrophys. J., 1994, vol. 424, pp. 436–443.CrossRefGoogle Scholar
  38. 38.
    Yudong, Y., Korsós, M.B., and Erdélyi, R., Detailed analysis of dynamic evolution of three Active Regions before flare and CME occurrence at the photospheric level, 2018. https://arxiv.org/pdf/1801.00430.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Central (Pulkovo) Astronomical Observatory, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Special Astrophysical Observatory, Russian Academy of SciencesNizhny ArkhyzRussia
  3. 3.Kalmyk State UniversityElistaRussia

Personalised recommendations